EVO-ENGINE: A directed evolution engine for engineering proteins and logic gates
EVO-ENGINE:用于工程蛋白质和逻辑门的定向进化引擎
基本信息
- 批准号:BB/P020615/1
- 负责人:
- 金额:$ 99.37万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Natural selection is the most powerful force in biology and drives the evolution of complex organisms, such as ourselves, simply by continually enriching for those that survive and replicate. This has been long exploited in the field of "directed evolution" which copies natural selection in an artificial manner, to obtain useful proteins. Directed evolution allows us to make proteins with complex properties that would be impossible to achieve by design alone. Perhaps the best-known example is the now widely-used cancer drug, Herceptin, which was originally evolved in the laboratory using a technique called "phage display". This method uses tiny viruses called phage - which only infect bacteria - to evolve new proteins. Randomised proteins are made by the phage and only ones which stick to a desired target are retained and survive - and so they are said to be evolving. At the end of each experiment, the proteins are recovered and can be made in large quantities and purified. Around 20 drugs made by artificial selection (phage display) are already approved for use in humans or are in in late stage clinical trials. This technology is therefore very powerful and has already benefited humanity greatly. It is possible to use phage and directed evolution not just for making proteins with new "sticky" properties but for engineering complex functions. Moreover, there is a new scientific field called synthetic biology which aims to re-engineer biological networks and systems to make useful enzymes, molecules and even small machines - such as biological computers and selective cancer cell modulators. One branch of synthetic biology aims to generate genetic circuits - similar to the logic gates that are used in standard electronics and computers - and these are currently made very laboriously, one-by-one, with a huge amount of trial-and-error. By applying directed evolution we believe that we can save a lot of time and effort by simply evolving logic gates in phage and bacteria, in order to obtain a new generation of useful biological tools. We have already built a prototype robot (The EVO-ENGINE) that grows phage and bacteria under a series of selective pressures. In this way, only the ones containing a functional logic gate survive. Over time, with random mutations, and increasing selection pressures, better and better logic gates evolve. The resulting components have a vast range of biotechnology applications, such as making biological sensors (for example, to detect pollutants in the environment) or for controlling synthesis circuits in bacteria to make useful products (plastics, fuels and medicines). We are only beginning to harness the power of directed evolution - which nature has exploited for millions of years - and this BBSRC-funded project has the potential to provide a major advance.
自然选择是生物学中最强大的力量,它驱动着复杂生物体的进化,比如我们自己,仅仅是通过不断丰富那些生存和复制的生物。这在“定向进化”领域已经被利用很长时间了,定向进化以人工方式复制自然选择,以获得有用的蛋白质。定向进化使我们能够制造出具有复杂特性的蛋白质,而这些特性仅通过设计是不可能实现的。也许最著名的例子是现在广泛使用的抗癌药物赫赛汀,它最初是在实验室中使用一种称为“噬菌体展示”的技术进化出来的。这种方法使用称为噬菌体的微小病毒-只感染细菌-来进化新的蛋白质。随机化的蛋白质是由噬菌体制造的,只有那些粘在所需靶标上的蛋白质才会被保留下来并存活下来-因此它们被称为进化。在每次实验结束时,蛋白质被回收,可以大量制备和纯化。通过人工选择(噬菌体展示)制造的大约20种药物已经被批准用于人类或处于后期临床试验阶段。因此,这项技术是非常强大的,已经大大造福于人类。利用噬菌体和定向进化不仅可以制造具有新的“粘性”特性的蛋白质,而且可以设计复杂的功能。此外,还有一个新的科学领域称为合成生物学,旨在重新设计生物网络和系统,以制造有用的酶,分子甚至小型机器-例如生物计算机和选择性癌细胞调节剂。合成生物学的一个分支旨在生成遗传电路--类似于标准电子设备和计算机中使用的逻辑门--目前,这些电路的制作非常费力,一个接一个,需要大量的试错。通过应用定向进化,我们相信,我们可以节省大量的时间和精力,通过简单地进化噬菌体和细菌中的逻辑门,以获得新一代有用的生物工具。我们已经建造了一个原型机器人(EVO引擎),它在一系列选择压力下生长噬菌体和细菌。以这种方式,只有包含功能逻辑门的那些才能存活。随着时间的推移,随着随机突变和越来越大的选择压力,越来越好的逻辑门进化出来。由此产生的组件具有广泛的生物技术应用,例如制造生物传感器(例如,检测环境中的污染物)或控制细菌中的合成电路以制造有用的产品(塑料,燃料和药物)。我们才刚刚开始利用定向进化的力量-大自然已经利用了数百万年-这个BBSRC资助的项目有可能提供一个重大的进步。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineering the smallest transcription factor: accelerated evolution of a 63-amino acid peptide dual activator-repressor
设计最小的转录因子:63 个氨基酸肽双激活子-阻遏物的加速进化
- DOI:10.1101/725739
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Brödel A
- 通讯作者:Brödel A
The Application of CRISPR/Cas Systems for Antiviral Therapy.
CRISPR/CAS系统在抗病毒疗法中的应用。
- DOI:10.3389/fgeed.2021.745559
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Baddeley HJE;Isalan M
- 通讯作者:Isalan M
Pseudotyping Bacteriophage P2 Tail Fibers to Extend the Host Range for Biomedical Applications.
- DOI:10.1021/acssynbio.1c00629
- 发表时间:2022-10-21
- 期刊:
- 影响因子:4.7
- 作者:Cunliffe, Tabitha G.;Parker, Alan L.;Jaramillo, Alfonso
- 通讯作者:Jaramillo, Alfonso
Trp-ing upon new repressors.
Trp-ing 新的阻遏物。
- DOI:10.1038/s41589-018-0012-9
- 发表时间:2018
- 期刊:
- 影响因子:14.8
- 作者:Brödel AK
- 通讯作者:Brödel AK
Scarless Recombineering of Phage in Lysogenic State.
- DOI:10.1007/978-1-0716-2233-9_1
- 发表时间:2022-01-01
- 期刊:
- 影响因子:0
- 作者:Ababi, Maria;Tridgett, Matthew;Jaramillo, Alfonso
- 通讯作者:Jaramillo, Alfonso
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Isalan其他文献
Obligate Heterodimer-Meganukleasen und ihre Verwendung
专性异二聚体巨核细胞和相关性
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Emmanuel Fajardo Sanchez;Sylvestre Grizot;Mark Isalan;Luis Serrano i Pubul;François Stricher - 通讯作者:
François Stricher
A cell in a computer
计算机中的一个单元格
- DOI:
10.1038/488040a - 发表时间:
2012-08-01 - 期刊:
- 影响因子:48.500
- 作者:
Mark Isalan - 通讯作者:
Mark Isalan
Mark Isalan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Isalan', 18)}}的其他基金
Genome engineering and synthetic biology approaches for improving industrial CHO cell production of biologics
用于改善工业 CHO 细胞生物制剂生产的基因组工程和合成生物学方法
- 批准号:
BB/M028933/1 - 财政年份:2015
- 资助金额:
$ 99.37万 - 项目类别:
Research Grant
相似国自然基金
基于Google Earth Engine云平台的遥感图像去云研究
- 批准号:
- 批准年份:2021
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
NSF Engines: Louisiana Energy Transition Engine
NSF 发动机:路易斯安那州能源转型发动机
- 批准号:
2315727 - 财政年份:2024
- 资助金额:
$ 99.37万 - 项目类别:
Cooperative Agreement
Next-Generation Distributed Graph Engine for Big Graphs
适用于大图的下一代分布式图引擎
- 批准号:
DP240101322 - 财政年份:2024
- 资助金额:
$ 99.37万 - 项目类别:
Discovery Projects
Powering Small Craft with a Novel Ammonia Engine
用新型氨发动机为小型船只提供动力
- 批准号:
10099896 - 财政年份:2024
- 资助金额:
$ 99.37万 - 项目类别:
Collaborative R&D
NSF Engines: North Dakota Advanced Agriculture Technology Engine
NSF 发动机:北达科他州先进农业技术发动机
- 批准号:
2315315 - 财政年份:2024
- 资助金额:
$ 99.37万 - 项目类别:
Cooperative Agreement
NSF Engines: Piedmont Triad Regenerative Medicine Engine
NSF 引擎:Piedmont Triad 再生医学引擎
- 批准号:
2315654 - 财政年份:2024
- 资助金额:
$ 99.37万 - 项目类别:
Cooperative Agreement
ENTICE: Enhanced Ammonia Cracking to Improve Engine Combustion and Emissions
ENTICE:增强氨裂解以改善发动机燃烧和排放
- 批准号:
10096979 - 财政年份:2024
- 资助金额:
$ 99.37万 - 项目类别:
Collaborative R&D
Free-Piston Engine Generator for Cold-Ironing in UK Ports
用于英国港口冷熨烫的自由活塞发动机发电机
- 批准号:
10098985 - 财政年份:2024
- 资助金额:
$ 99.37万 - 项目类别:
Collaborative R&D
ViMuSe - a video-based AI music recommendation engine to improve creative efficiency and diversity.
ViMuSe - 基于视频的AI音乐推荐引擎,可提高创作效率和多样性。
- 批准号:
10104871 - 财政年份:2024
- 资助金额:
$ 99.37万 - 项目类别:
Collaborative R&D
M1H Zero Carbon Hydrogen Internal Combustion Engine
M1H零碳氢内燃机
- 批准号:
10098267 - 财政年份:2024
- 资助金额:
$ 99.37万 - 项目类别:
Collaborative R&D
NSF Engines: Central Florida Semiconductor Innovation Engine
NSF 引擎:佛罗里达州中部半导体创新引擎
- 批准号:
2315320 - 财政年份:2024
- 资助金额:
$ 99.37万 - 项目类别:
Cooperative Agreement