Phyto-optofluidics - A quantitative super-resolution imaging approach for next generation plant physiology research
植物光流控——用于下一代植物生理学研究的定量超分辨率成像方法
基本信息
- 批准号:BB/P026508/1
- 负责人:
- 金额:$ 18.6万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fluorescence microscopy is widely used as a sensitive tool to investigate the biology and biophysical properties of cells and tissues since it provides exceptional contrast, high resolution and can be made specifically sensitive to individual types of biomolecules that play vital roles in cells and tissues. Until about 10 years ago it was thought that fluorescence imaging, like other types of optical microscopy, is inherently limited because light is a type of electromagnetic wave and its resolution is therefore limited to about half the wavelength of light, or ~250 nm. Light microscopy would therefore be incapable of directly resolving biomolecules that are typically only a few nanometres in size. This limitation has been overcome by new types of microscopy that are called "super-resolution" techniques.These super-resolution techniques have opened a window into complex biological systems such as cells and tissues because they provide a direct view of the molecular structure of these systems. This knowledge is becoming especially important in plant biology as we are attempting to understand the processes that occur when a plant is affected by a pathogen. The response of the plant to such challenges depends on the action of particular types of biomolecules and we need a way to detect how the concerted action of small groups of such molecules are involved in vital plant defence mechanisms. This information is critical to developing new ways to protect plants and a key aspect of current food security research efforts. Despite the importance of seeing molecules in plants using these new high-resolution microscopy techniques this has been hampered by the strong background signals that plants generate when they are illuminated under the microscope. Green light-harvesting chlorophyll is a particular problem.Recently it has been suggested that our detailed knowledge of DNA and its properties in forming duplexes (that typically form the well-known double-helix) can be used to tailor the molecular interactions between molecules that emit coloured light, i.e. dye molecules, and the marker molecules that biologists use to attach to specific biomolecules. In this project we will use this approach to make individual molecules especially bright so that they can be seen against the plant cell backgrounds arising from chlorophyll. Due to the flexibility that the new synthetic DNA approach gives us we can use a colour range where the background signals are weaker.In this project we will for the first time show how the new DNA based approach can overcome previous problems with imaging in plant samples and show molecules in plant cells that are critical for resisting infections. An additional aspect of the new imaging tools that we will develop is a quantitative mode of imaging so that the number of molecules can be directly counted which is critical for mathematical understanding in cell biology. The molecular counting mode will be simplified in our new approach by employing a new type of sensor that provides a counting standard that we can use for an important step in any quantitative method, namely calibration. By integrating the calibration sensor with our DNA imaging technique routine calibration becomes a comparatively straightforward task which helps achieve routine and accurate measurements of molecule numbers.Finally, we will arrange the components of our new imaging technique so that the plants can be grown in a small experimental chamber that allows experimenters to flow nutrients past our plants to support normal plant growth and development. Experimenters can introduce molecules from pathogens while imaging the plant cells. In combination with the new imaging tools this will enable realistic and well-controlled studies of plants in changing environments as a miniature model of plant life on earth.
荧光显微镜作为一种灵敏的工具被广泛用于研究细胞和组织的生物学和生物物理性质,因为它具有特殊的对比度、高分辨率,并且可以对在细胞和组织中发挥重要作用的个别类型的生物分子特别敏感。直到大约10年前,人们还认为,荧光成像和其他类型的光学显微镜一样,本质上是有限的,因为光是电磁波的一种,因此其分辨率限制在光的大约一半波长,即~250 nm。因此,光学显微镜不能直接分辨通常只有几纳米大小的生物分子。这种限制已经被称为“超分辨率”技术的新型显微镜技术所克服。这些超分辨率技术为研究复杂的生物系统打开了一扇窗,因为它们提供了对这些系统的分子结构的直接观察。这一知识在植物生物学中变得特别重要,因为我们正在试图了解当植物受到病原体影响时发生的过程。植物对这种挑战的反应取决于特定类型的生物分子的作用,我们需要一种方法来检测这种小分子的协同作用如何参与重要的植物防御机制。这些信息对于开发保护植物的新方法至关重要,也是当前粮食安全研究工作的一个关键方面。尽管使用这些新的高分辨率显微镜技术观察植物中的分子很重要,但植物在显微镜下照射时会产生强烈的背景信号,这一点一直受到阻碍。获取绿光是一个特殊的问题。最近有人提出,我们对DNA及其形成双链(通常形成众所周知的双螺旋)的性质的详细了解可以用来定制发出有色光的分子(即染料分子)与生物学家用来附着在特定生物分子上的标记分子之间的分子相互作用。在这个项目中,我们将使用这种方法来使单个分子特别明亮,以便可以在由叶绿素引起的植物细胞背景中看到它们。由于新的合成DNA方法给我们带来了灵活性,我们可以在背景信号较弱的地方使用颜色范围。在这个项目中,我们将首次展示基于DNA的新方法如何克服以前在植物样本中进行成像的问题,并显示植物细胞中对抵抗感染至关重要的分子。我们将开发的新成像工具的另一个方面是成像的定量模式,以便可以直接计算分子的数量,这对于细胞生物学中的数学理解至关重要。在我们的新方法中,分子计数模式将被简化,采用一种新型的传感器,它提供了一个计数标准,我们可以将其用于任何定量方法的重要步骤,即校准。通过将校准传感器与我们的DNA成像技术集成在一起,常规校准成为一项相对简单的任务,有助于实现常规和准确的分子数测量。最后,我们将安排新成像技术的组件,以便植物可以在一个小型实验室中生长,允许实验者通过植物流动营养物质,以支持植物的正常生长和发育。实验人员可以在对植物细胞成像的同时引入病原体的分子。与新的成像工具相结合,这将使对变化环境中的植物进行现实和良好控制的研究成为地球上植物生命的微型模型。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparing Transient Oligonucleotide Hybridization Kinetics Using DNA-PAINT and Optoplasmonic Single-Molecule Sensing on Gold Nanorods
- DOI:10.1021/acsphotonics.1c01179
- 发表时间:2021-09-08
- 期刊:
- 影响因子:7
- 作者:Eerqing, Narima;Subramanian, Sivaraman;Vollmer, Frank
- 通讯作者:Vollmer, Frank
An Immune-Responsive Cytoskeletal-Plasma Membrane Feedback Loop in Plants.
- DOI:10.1016/j.cub.2018.05.014
- 发表时间:2018-07-09
- 期刊:
- 影响因子:0
- 作者:Sassmann S;Rodrigues C;Milne SW;Nenninger A;Allwood E;Littlejohn GR;Talbot NJ;Soeller C;Davies B;Hussey PJ;Deeks MJ
- 通讯作者:Deeks MJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christian Soeller其他文献
InsP<sub>3</sub>R-RyR channel crosstalk augments sarcoplasmic reticulum Ca<sup>2+</sup> release and arrhythmogenic activity in post-MI pig cardiomyocytes
- DOI:
10.1016/j.yjmcc.2023.03.015 - 发表时间:
2023-06-01 - 期刊:
- 影响因子:
- 作者:
Xin Jin;Anna Meletiou;Joshua Chung;Agne Tilunaite;Kateryna Demydenko;Eef Dries;Rosa Doñate Puertas;Matthew Amoni;Ashutosh Tomar;Guillaume Gilbert;Piet Claus;Christian Soeller;Vijay Rajagopal;Karin Sipido;H. Llewelyn Roderick - 通讯作者:
H. Llewelyn Roderick
Dislocations and Helicoids in Myofibrillar Z-Disks of Mammalian Ventricular Myocytes and Implications for Calcium Handling
- DOI:
10.1016/j.bpj.2009.12.1946 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Isuru D. Jayasinghe;Pan Li;Arun V. Holden;David J. Crossman;Mark B. Cannell;Christian Soeller - 通讯作者:
Christian Soeller
Quantitative Immunocytochemistry of Proteins Using 2- Photon Microscopy and Digital Image Analysis.
使用 2 光子显微镜和数字图像分析对蛋白质进行定量免疫细胞化学。
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:2.8
- 作者:
Hong Wan;Christian Soeller;D. R. Garrod;Clive Robinson;M. Cannell - 通讯作者:
M. Cannell
Analysis of RYR2 distribution in HEK293 cells and mouse cardiac myocytes using 3D minflux microscopy achieves all optical subunit resolution
- DOI:
10.1016/j.bpj.2023.11.743 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Anna Meletiou;Alexander H. Clowsley;Evelina Lucinskaite;Isabelle Jansen;Peter P. Jones;William E. Louch;Christian Soeller - 通讯作者:
Christian Soeller
Cardiac multiscale bioimaging: from nano- through micro- to mesoscales
心脏多尺度生物成像:从纳米尺度到微观尺度再到介观尺度
- DOI:
10.1016/j.tibtech.2023.08.007 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:14.900
- 作者:
Elen Tolstik;Stephan E. Lehnart;Christian Soeller;Kristina Lorenz;Leonardo Sacconi - 通讯作者:
Leonardo Sacconi
Christian Soeller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christian Soeller', 18)}}的其他基金
A new super-resolution proximity assay to probe RNA transcription condensates
一种新的超分辨率邻近测定法来探测 RNA 转录凝聚物
- 批准号:
BB/T007176/2 - 财政年份:2021
- 资助金额:
$ 18.6万 - 项目类别:
Research Grant
A new super-resolution proximity assay to probe RNA transcription condensates
一种新的超分辨率邻近测定法来探测 RNA 转录凝聚物
- 批准号:
BB/T007176/1 - 财政年份:2020
- 资助金额:
$ 18.6万 - 项目类别:
Research Grant
Focus enhanced single molecule super-resolution microscopy - correlative confocal and nanoscale imaging in thick tissues
聚焦增强单分子超分辨率显微镜 - 厚组织中的相关共焦和纳米级成像
- 批准号:
EP/N008235/1 - 财政年份:2016
- 资助金额:
$ 18.6万 - 项目类别:
Research Grant
相似海外基金
Nano-homodyne-optofluidicsによる汎用超高感度ナノ物質検出法の創成
使用纳米零差光流控创建通用超灵敏纳米材料检测方法
- 批准号:
24K01322 - 财政年份:2024
- 资助金额:
$ 18.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Optofluidics dissolved oxygen and ammonia sensor
光流控溶解氧和氨传感器
- 批准号:
562986-2021 - 财政年份:2021
- 资助金额:
$ 18.6万 - 项目类别:
University Undergraduate Student Research Awards
A low cost Optofluidics microscope for Point-of-Care diagnosis
用于即时诊断的低成本光流控显微镜
- 批准号:
562997-2021 - 财政年份:2021
- 资助金额:
$ 18.6万 - 项目类别:
University Undergraduate Student Research Awards
A low cost Optofluidics microscope for Point-of-Care diagnosis
用于即时诊断的低成本光流控显微镜
- 批准号:
552511-2020 - 财政年份:2020
- 资助金额:
$ 18.6万 - 项目类别:
University Undergraduate Student Research Awards
Hollow waveguides and micro-cavities for optofluidics
用于光流控的中空波导和微腔
- 批准号:
RGPIN-2015-04835 - 财政年份:2019
- 资助金额:
$ 18.6万 - 项目类别:
Discovery Grants Program - Individual
Optofluidics-based sensing platforms
基于光流控的传感平台
- 批准号:
RGPIN-2014-05138 - 财政年份:2018
- 资助金额:
$ 18.6万 - 项目类别:
Discovery Grants Program - Individual
High-throughput, single-cell optofluidic platform for point-of-care diagnosis
用于即时诊断的高通量单细胞光流控平台
- 批准号:
18F18716 - 财政年份:2018
- 资助金额:
$ 18.6万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Solar Optofluidics (SOLO): Water Splitting beyond the 1.23 eV Thermodynamic Constraints
太阳能光流体 (SOLO):超越 1.23 eV 热力学约束的水分解
- 批准号:
EP/R012164/1 - 财政年份:2018
- 资助金额:
$ 18.6万 - 项目类别:
Research Grant
Hollow waveguides and micro-cavities for optofluidics
用于光流控的中空波导和微腔
- 批准号:
RGPIN-2015-04835 - 财政年份:2018
- 资助金额:
$ 18.6万 - 项目类别:
Discovery Grants Program - Individual
Solar Optofluidics (SOLO): Water Splitting beyond the 1.23 eV Thermodynamic Constraints
太阳能光流体 (SOLO):超越 1.23 eV 热力学约束的水分解
- 批准号:
EP/R012164/2 - 财政年份:2018
- 资助金额:
$ 18.6万 - 项目类别:
Research Grant