Hollow waveguides and micro-cavities for optofluidics
用于光流控的中空波导和微腔
基本信息
- 批准号:RGPIN-2015-04835
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research lies at the increasingly important intersection between integrated optics, micro-electromechanical systems (MEMS), and microfluidics. Our long-term aim is to demonstrate complex `optofluidic systems on a chip' by targeting close integration of optical devices (e.g. waveguides, resonant cavities), electromechanical elements (e.g. electrical and magnetic control structures), and microfluidic or atom delivery channels and reservoirs. ***Underpinning the proposal is our previous development of a novel MEMS-like, buckling self-assembly process, which enables us to fabricate low-defect, air-core structures on a silicon-based chip. These air-core networks can encompass microfluidic channels, low-loss optical waveguides, spectral dispersion elements, and high quality micro-cavities. ***Building on this, our main objective is to develop arrays of air-core optical micro-cavities, monolithically integrated with hollow waveguides and microfluidic delivery mechanisms. Open-access optical micro-cavities of this kind can be infiltrated with liquids, gases, or atoms, and have great potential to address key needs within both the optical sensing and information processing fields: ***i. Optical sensing in lab-on-a-chip systems - Close integration of microfluidics with optical detection devices (micro-cavities, micro-spectrometers, etc.) is widely sought. The ultimate goal is the realization of powerful, low-cost, portable, and widely distributed sensing and analysis devices. The proposed work has strong potential to enable progress in this regard, and could have implications for the health, energy, and environmental monitoring sectors. ***ii. Quantum information processing - Quantum networks are expected to enable great advances in computing and secure communications, and will also yield insights into the fundamental nature of quantum mechanics. Interaction of atoms and light within optical resonant cavities, sometimes termed cavity quantum electrodynamics (CQED), is considered a leading candidate technology to achieve these goals. To date, there is no practical approach to the implementation of large arrays of high-finesse, open-access micro-cavities on a chip. The proposed work has strong potential to address this need. ***In summary, we will develop new optical integration technologies, and will apply these technologies to applications in sensing and information science. *****
所提出的研究是集成光学,微机电系统(MEMS)和微流体之间日益重要的交叉点。我们的长期目标是通过瞄准光学器件(例如波导,谐振腔),机电元件(例如电和磁控制结构)以及微流体或原子传递通道和储存器的紧密集成来展示复杂的“芯片上的光流体系统”。该提案的基础是我们之前开发的一种新颖的类似mems的,弯曲自组装工艺,使我们能够在硅基芯片上制造低缺陷的空芯结构。这些空芯网络可以包含微流体通道、低损耗光波导、光谱色散元件和高质量的微腔。在此基础上,我们的主要目标是开发空芯光学微腔阵列,单片集成空心波导和微流体输送机制。这种开放存取的光学微腔可以被液体、气体或原子渗透,在解决光学传感和信息处理领域的关键需求方面具有巨大的潜力。芯片实验室系统中的光学传感-微流体与光学检测设备(微腔,微光谱仪等)的紧密集成被广泛寻求。最终目标是实现强大、低成本、便携和广泛分布的传感和分析设备。拟议的工作极有可能在这方面取得进展,并可能对卫生、能源和环境监测部门产生影响。* * *二世。量子信息处理——量子网络有望在计算和安全通信方面取得巨大进步,也将产生对量子力学基本性质的见解。光学谐振腔内原子与光的相互作用,有时被称为腔量子电动力学(CQED),被认为是实现这些目标的主要候选技术。到目前为止,还没有一种实用的方法可以在芯片上实现大阵列的高精细度、开放的微腔。拟议的工作具有解决这一需求的巨大潜力。综上所述,我们将开发新的光学集成技术,并将这些技术应用于传感和信息科学。*****
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Decorby, Ray其他文献
Decorby, Ray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Medical imaging using on-chip THz waveguides
使用片上太赫兹波导的医学成像
- 批准号:
2883710 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Studentship
High-speed processing of low-loss optical waveguides by controlling the distribution of electron excitation using spatial light modulation
通过空间光调制控制电子激发分布来高速处理低损耗光波导
- 批准号:
22K20399 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Non-linear waveguides for quantum photonics
用于量子光子学的非线性波导
- 批准号:
2749545 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Studentship
Investigation into optical fiber waveguides, lasers and applications
光纤波导、激光器及其应用研究
- 批准号:
RGPIN-2017-05379 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Reconfigurable Millimeter-wave Filters and Systems Using Miniaturized Monolithic Wafer-Level Waveguides for 5G Communication Networks
用于 5G 通信网络的可重构毫米波滤波器和使用小型化单片晶圆级波导的系统
- 批准号:
532846-2019 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Postdoctoral Fellowships
WaVelength Meters for the mid-Infrared Enabled by Upconversion in Waveguides (NEW-VIEUW)
通过波导上转换实现中红外波长计(新视图)
- 批准号:
600531 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
EU-Funded
Investigation into optical fiber waveguides, lasers and applications
光纤波导、激光器及其应用研究
- 批准号:
RGPIN-2017-05379 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Single-cell direct RNA sequencing using electrical zero-mode waveguides and engineered reverse transcriptases
使用电零模式波导和工程逆转录酶进行单细胞直接 RNA 测序
- 批准号:
10487746 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Collaborative Research: All-Optical Fabrication of Low-Loss, High-Index-Contrast, Silicon-in-Silicon Waveguides
合作研究:低损耗、高折射率对比度、硅中硅波导的全光学制造
- 批准号:
2128962 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
ASCENT: Ultra-high Throughput Neural Recording using Flexible, Polymer-based Shanks as Terahertz Dielectric Waveguides
ASCENT:使用柔性聚合物柄作为太赫兹介电波导进行超高吞吐量神经记录
- 批准号:
2133138 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant