Engineering the bacterium Rhodopseudomonas palustris as a platform for electrosynthetic bioproduction
将沼泽红假单胞菌工程化为电合成生物生产平台
基本信息
- 批准号:BB/R009171/1
- 负责人:
- 金额:$ 70.05万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the context of global climate change and population growth, there is a need to replace fossil fuels with renewable sources of energy such as wind and solar power. However, if renewables are to be more widely taken up, new storage technologies are required to manage the fluctuations in the power they supply compared to demand. A second global challenge is meeting the growing demand for sustainably produced chemicals, both for fuels and for manufacturing.This project offers a comprehensive solution to the problems of energy storage and sustainable chemicals production, in the form of an electro-active biological material formed of genetically engineered bacteria. Electro-active bacteria can interact with metals in their environment and exchange electrons with their internal metabolism. Electrons that are taken up are used supply energy and to drive chemical reactions. Biological materials have the advantage of being self-assembling and self-repairing, and they capture carbon as they grow which decreases their environmental impact. The engineered bacteria would be grown in specialised electro-chemical reactors, allowing for secure containment and efficient use of land.This project will use the bacterium Rhodopseudomonas palustris, which is naturally electro-active and also has broad metabolic capabilities. This includes being able to harness light to produce energy, and the ability to capture both carbon dioxide (just as plants do when they photosynthesise) and nitrogen gases. The organism can also use electrical current to convert simple molecules into useful chemicals for fuels or manufacturing, or growth of the cell. We aim to engineer Rh. palustris so that it is more effective at taking up electrical current, and efficiently uses the electrical input to produce large amounts of desirable molecules. This would enable electrical energy to be converted into and stored as fuels such as hydrogen gas, or used for the production of useful molecules such as bio-plastics. Transfer of electrical current between cells and an electrode has already been demonstrated in Rh. palustris, showing the feasibility of this project. Synthetic biology is an approach to building designer organisms that uses standardised genetic parts and modular design to more predictably engineer their behaviour. This project requires the development of new genetic components for Rh. palustris. We will characterise libraries of genetic parts that will give us control over when and how strongly certain genes are expressed. We will also optimise methods for making genetic alterations to the Rh. palustris chromosome and expressing foreign genes. These tools will also be useful to other researchers who are working with Rh. palustris, and may be transferable to related organisms.We will also do fundamental research into how Rh. palustris takes up electrons, at the level of gene expression. This will inform us about how we might need to alter the gene expression to channel the organism's energy and metabolic pathways into useful activities. Again, this will be useful to other researchers looking to engineer Rh. palustris to produce desirable chemicals.Together, these genetic tools and data will enable us to introduce genes into Rh. palustris that give it the capability to effectively import electrical current, and to produce useful chemicals that it cannot naturally synthesise. We will also add genetic elements to control the switching between these different activities. Ultimately we aim to have integrated all these new functions together, producing a prototype organism for the conversion of electrical power to chemicals.
在全球气候变化和人口增长的背景下,有必要用风能和太阳能等可再生能源取代化石燃料。然而,如果可再生能源要被更广泛地采用,就需要新的存储技术来管理它们供应的电力与需求相比的波动。第二个全球挑战是满足燃料和制造对可持续生产的化学品日益增长的需求。该项目以基因工程细菌形成的电活性生物材料的形式,为能源储存和可持续化学品生产提供了一个全面的解决方案。电活性细菌可以与环境中的金属相互作用,并与内部新陈代谢交换电子。被占据的电子被用来提供能量并驱动化学反应。生物材料具有自组装和自我修复的优势,它们在生长过程中捕获碳,从而减少对环境的影响。工程菌将在专门的电化学反应器中生长,以便安全控制和有效利用土地。该项目将使用沼泽红假单胞菌,它自然具有电活性,也具有广泛的新陈代谢能力。这包括能够利用光产生能量,以及捕获二氧化碳(就像植物在光合作用时所做的那样)和氮气的能力。生物体还可以利用电流将简单的分子转化为有用的化学物质,用于燃料或制造,或细胞的生长。我们的目标是设计Rh。因此,它在吸收电流方面更有效,并有效地利用电力输入来产生大量所需的分子。这将使电能能够转化为氢气等燃料并储存起来,或用于生产生物塑料等有用的分子。在Rh中已经证明了电池和电极之间的电流转移。沼泽,显示了这一项目的可行性。合成生物学是一种构建设计有机体的方法,它使用标准化的遗传部分和模块化设计来更可预测地设计它们的行为。该项目需要开发新的Rh基因成分。沼泽地。我们将描述基因部分的文库,这些文库将使我们能够控制某些基因何时表达以及表达强度如何。我们还将优化对Rh进行基因改变的方法。沼泽草染色体和外源基因的表达。这些工具对正在研究Rh的其他研究人员也很有用。我们还将对Rh.沼泽在基因表达水平上吸收电子。这将告诉我们,我们可能需要如何改变基因表达,以将有机体的能量和代谢途径引导到有用的活动中。同样,这将对其他希望设计Rh的研究人员有用。这些基因工具和数据将使我们能够将基因引入Rh。沼泽使它有能力有效地输入电流,并产生它不能自然合成的有用化学物质。我们还将添加遗传元素来控制这些不同活动之间的切换。最终,我们的目标是将所有这些新功能整合在一起,生产出一种将电能转化为化学物质的原型生物。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bio-electrical engineering: a promising frontier for synthetic biology
生物电工程:合成生物学的一个有前途的前沿领域
- DOI:10.1042/bio04103010
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Bradley R
- 通讯作者:Bradley R
Phenazines as model low-midpoint potential electron shuttles for photosynthetic bioelectrochemical systems.
作为光合生物电气化学系统的模型低中点电子班车的模型。
- DOI:10.1039/d0sc05655c
- 发表时间:2021-01-15
- 期刊:
- 影响因子:8.4
- 作者:Clifford ER;Bradley RW;Wey LT;Lawrence JM;Chen X;Howe CJ;Zhang JZ
- 通讯作者:Zhang JZ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Buck其他文献
Regulation of the nitrogen fixation genes inKlebsiella pneumoniae: Implications for genetic manipulation
肺炎克雷伯菌固氮基因的调控:对基因操作的影响
- DOI:
- 发表时间:
1986 - 期刊:
- 影响因子:4.9
- 作者:
Ray Dixon;Martin Buck;Martin Drummond;T. Hawkes;Haseena Khan;S. MacFarlane;Mike Merrick;John Postgate - 通讯作者:
John Postgate
Nucleotide-dependent interactions between a fork junction-RNA polymerase complex and an AAA+ transcriptional activator protein.
叉连接-RNA 聚合酶复合物和 AAA 转录激活蛋白之间的核苷酸依赖性相互作用。
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:14.9
- 作者:
W. Cannon;J. Schumacher;Martin Buck - 通讯作者:
Martin Buck
Conformational Changes of <em>Escherichia coli</em> σ<sup>54</sup>-RNA-Polymerase upon Closed–Promoter Complex Formation
- DOI:
10.1016/j.jmb.2005.09.057 - 发表时间:
2005-11-25 - 期刊:
- 影响因子:
- 作者:
Pampa Ray;Richard J. Hall;Robert D. Finn;Shaoxia Chen;Ardan Patwardhan;Martin Buck;Marin van Heel - 通讯作者:
Marin van Heel
Regulatory sequences in sigma 54 localise near the start of DNA melting.
西格玛 54 中的调控序列位于 DNA 解链起点附近。
- DOI:
10.1006/jmbi.2000.4393 - 发表时间:
2001 - 期刊:
- 影响因子:5.6
- 作者:
S. Wigneshweraraj;M. Chaney;Akira Ishihama;Martin Buck - 通讯作者:
Martin Buck
Sequences within the DNA Cross-linking Patch of ς<sup>54</sup>Involved in Promoter Recognition, ς Isomerization, and Open Complex Formation
- DOI:
10.1074/jbc.m002253200 - 发表时间:
2000-07-21 - 期刊:
- 影响因子:
- 作者:
Matthew Chaney;Melinda Pitt;Martin Buck - 通讯作者:
Martin Buck
Martin Buck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Buck', 18)}}的其他基金
Absolute quantification of SARS-CoV-2 proteins and their human targets for informing drug strategies and accelerating vaccine development
SARS-CoV-2 蛋白及其人类靶标的绝对定量,为药物策略提供信息并加速疫苗开发
- 批准号:
BB/V013866/1 - 财政年份:2020
- 资助金额:
$ 70.05万 - 项目类别:
Research Grant
Managing the Nitrogen economy of bacteria
管理细菌的氮经济
- 批准号:
BB/N003608/1 - 财政年份:2016
- 资助金额:
$ 70.05万 - 项目类别:
Research Grant
Role of RNA repair in the tolerance of bacteria to antibiotics.
RNA 修复在细菌对抗生素耐受性中的作用。
- 批准号:
MR/M017672/1 - 财政年份:2015
- 资助金额:
$ 70.05万 - 项目类别:
Research Grant
RNA FISH to determine bacterial RNA polymerase functionalities required for sigma factor specific escape from antibiotic action
RNA FISH 用于确定细菌 RNA 聚合酶的功能,该功能是 Sigma 因子特异性逃避抗生素作用所需的
- 批准号:
BB/L027135/1 - 财政年份:2014
- 资助金额:
$ 70.05万 - 项目类别:
Research Grant
Design and construction of electrogenic cell-based biosensors for pathogens and toxins
病原体和毒素的基于细胞的生电生物传感器的设计和构建
- 批准号:
BB/K016288/1 - 财政年份:2013
- 资助金额:
$ 70.05万 - 项目类别:
Research Grant
Determining bacterial RNA polymerase functionalities required for sigma factor specific escape from antibiotic action.
确定细菌 RNA 聚合酶功能所需的西格玛因子特异性逃避抗生素作用。
- 批准号:
BB/J00717X/1 - 财政年份:2012
- 资助金额:
$ 70.05万 - 项目类别:
Research Grant
Biological functions that depend upon the bridge helix of RNA polymerase
依赖于 RNA 聚合酶桥螺旋的生物学功能
- 批准号:
BB/J002828/1 - 财政年份:2011
- 资助金额:
$ 70.05万 - 项目类别:
Research Grant
Mapping combinatorial stress responses in bacteria using chimeric proteins and probabilistic modelling
使用嵌合蛋白和概率模型绘制细菌的组合应激反应
- 批准号:
BB/G020434/1 - 财政年份:2009
- 资助金额:
$ 70.05万 - 项目类别:
Research Grant
Geometric requirements for gene activation
基因激活的几何要求
- 批准号:
BB/G001278/1 - 财政年份:2008
- 资助金额:
$ 70.05万 - 项目类别:
Research Grant
The RNA polymerase bridge helix and domain communication
RNA聚合酶桥螺旋和结构域通讯
- 批准号:
BB/E000975/1 - 财政年份:2006
- 资助金额:
$ 70.05万 - 项目类别:
Research Grant
相似海外基金
Oral bacterium Streptococcus mutans promotes tumor metastasis via thrombosis formation
口腔细菌变形链球菌通过血栓形成促进肿瘤转移
- 批准号:
24K19985 - 财政年份:2024
- 资助金额:
$ 70.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Interaction Analysis of DR0042 Protein from a Radioresistant Bacterium
来自抗辐射细菌的 DR0042 蛋白的相互作用分析
- 批准号:
23K05015 - 财政年份:2023
- 资助金额:
$ 70.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probing light-driven iron oxidation in primordial oceans through a living fossil bacterium
通过活化石细菌探测原始海洋中光驱动的铁氧化
- 批准号:
23K19390 - 财政年份:2023
- 资助金额:
$ 70.05万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Study on virulence factors of the causative bacterium of edwardsiellosis involved in the attenuating of the host immune system
爱德华氏菌病致病菌与宿主免疫系统减弱相关的毒力因子研究
- 批准号:
23KJ1776 - 财政年份:2023
- 资助金额:
$ 70.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Investigating the metabolic cooperation between a phototrophic bacterium and a methanogenic archaeon
研究光养细菌和产甲烷古菌之间的代谢合作
- 批准号:
2300081 - 财政年份:2023
- 资助金额:
$ 70.05万 - 项目类别:
Standard Grant
To kill or not to kill: deciphering the metabolic triggers of a facultative algicidal bacterium Ponticoccus. (4565)
杀还是不杀:破译兼性杀藻细菌桥球菌的代谢触发因素。
- 批准号:
2859444 - 财政年份:2023
- 资助金额:
$ 70.05万 - 项目类别:
Studentship
Characterization of rice root that decrease methane emissions by bacterium inoculation
通过细菌接种减少甲烷排放的水稻根部特征
- 批准号:
23K19316 - 财政年份:2023
- 资助金额:
$ 70.05万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Inhibition of Th2 responses by secreted components of a common farm bacterium
常见农场细菌的分泌成分对 Th2 反应的抑制
- 批准号:
10563116 - 财政年份:2022
- 资助金额:
$ 70.05万 - 项目类别:
Role of flagella glycosylation in root colonization by a plant growth-promoting bacterium
鞭毛糖基化在植物促生长细菌根部定植中的作用
- 批准号:
572112-2022 - 财政年份:2022
- 资助金额:
$ 70.05万 - 项目类别:
University Undergraduate Student Research Awards
Exploring the pathogenic capabilities of the bacterium, Pantoea, using the wax worm as a model
以蜡虫为模型探索泛菌属细菌的致病能力
- 批准号:
573796-2022 - 财政年份:2022
- 资助金额:
$ 70.05万 - 项目类别:
University Undergraduate Student Research Awards