Do fish have necks: measuring 3D motion of the vertebrae and axial muscle dynamics in suction-feeding fishes.
鱼有脖子吗:测量吸食性鱼类的椎骨 3D 运动和轴向肌肉动力学。
基本信息
- 批准号:BB/R011109/1
- 负责人:
- 金额:$ 35.84万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I will demonstrate how muscles and bones work together to give humans and animals a flexible neck, by studying the hidden "neck" of fish. A neck allows the head to move three-dimensionally, and independently of the limbs and body. Its importance in humans is starkly illustrated by the functional deficits imposed by disorders of the neck, and its origin was a major transformation that spurred the evolution of land-dwelling vertebrates. Yet we know relatively little of how the bones and muscles of the neck interact to provide these essential functions, because their structure and motions are complex and have been impossible to directly visualize or separate from motions of the head and body. With new imaging techniques it is now possible to measure bone and muscle motion in 3D, and fish offer anintriguing model system for investigating these questions. Although fish lack a true, anatomical neck, studies of their feeding suggest the backbone could function as a neck by bending upwards to lift the head away from the body. If fish do have a hidden "neck", it is powered by the body muscles, which extend from head to tail in a complex architecture of muscle fibres. All muscles have a trade-off between how fast they can shorten and how much force they can produce. The orientation of the body muscle fibres and the way that changes as they shorten could allow the muscle to "shift gears" and shorten at different speeds, depending on the force required. This dynamic gearing can occur in human muscles, and may contribute to age-related changes in muscle performance. Directly measuring dynamic fibre orientation and shortening has been very challenging, but new methods for visualizing muscle fibres and measuring their motion may provide key insights into muscle function. I will measure the 3D bending of the backbone in fish and its role in moving the head three-dimensionally and independently of the shoulder girdle and body. I will also examine the architecture and dynamic gearing of the body muscles in this neck region to establish how fibre re-orientation impacts muscle performance. I will carry out this research at the University of Liverpool, using new, X-ray based visualizations to measure 3D bone and muscle motion in three fish with a range of vertebral shapes and hypothesized "neck bending". This work builds on my experience using and developing such 3D imaging tools, and utilizes the University's world-class X-ray filming facility. X-ray video of each fish's head, shoulder girdle, and backbone will be matched with 3D models of these bones, built from CT scans, to create an accurate 3D animation from which I can measure each bone's motion. From these X-ray videos, I will also measure how the body muscles change length and shape during neck motion. By learning contrast-enhanced micro-CT scanning techniques from Dr. Nathan Jeffrey, I can visualize the 3D arrangement of the body muscle fibres. Working with Dr. Karl Bates and Kris D'Aout, I will use these images to add virtual muscle fibres to the bone animations: creating a model of how fibre orientation and muscle shape change affects muscle shortening. The proposed research will change our perspective on the origin of the neck, and provide insights into muscle dynamics. By linking the anatomy and motion of the backbone in living fish, this study will lay the foundation for understanding how the neck may have evolved. It will also help aquaculturists understand and improve feeding performance in commercial trout. My data on shape changes, fibre rotation and shortening of fish muscles can be applied to understanding how human muscles undergo these same dynamics-and how changes these dynamics during ageing may impact health and performance. Lastly, I will use the engaging 3D models, animations, and X-ray videos from this research in outreach programs at the World Museum in Liverpool and local science clubs to inspire the next generation of scientists and innovators.
我将通过研究鱼的隐藏的“脖子”来展示肌肉和骨骼如何共同作用,使人类和动物拥有灵活的脖子。颈部使头部能够独立于四肢和身体进行三维运动。它在人类中的重要性可以通过颈部疾病造成的功能缺陷来清楚地说明,它的起源是一个重大的转变,刺激了陆栖脊椎动物的进化。然而,我们对颈部的骨骼和肌肉如何相互作用以提供这些基本功能知之甚少,因为它们的结构和运动很复杂,不可能直接可视化或与头部和身体的运动分开。随着新的成像技术,现在可以测量骨骼和肌肉的三维运动,鱼类为研究这些问题提供了一个有趣的模型系统。虽然鱼类没有真正的、解剖学上的脖子,但对它们进食的研究表明,脊椎骨可以通过向上弯曲将头部抬离身体来起到脖子的作用。如果鱼确实有一个隐藏的“脖子”,它是由身体肌肉提供动力的,这些肌肉在一个复杂的肌肉纤维结构中从头部延伸到尾部。所有的肌肉都在缩短速度和产生力量之间进行权衡。身体肌肉纤维的方向和它们缩短时的变化方式可以让肌肉“换挡”并以不同的速度缩短,这取决于所需的力量。这种动态齿轮可以发生在人体肌肉中,并可能导致肌肉性能的年龄相关变化。直接测量动态纤维方向和缩短一直非常具有挑战性,但可视化肌肉纤维并测量其运动的新方法可能会为肌肉功能提供关键见解。我将测量鱼的脊椎的3D弯曲及其在三维移动头部和独立于肩带和身体的作用。我还将检查该颈部区域身体肌肉的结构和动态传动,以确定纤维重新定向如何影响肌肉表现。 我将在利物浦大学进行这项研究,使用新的基于X射线的可视化技术来测量三条鱼的三维骨骼和肌肉运动,这些鱼具有一系列脊椎形状和假设的“颈部弯曲”。这项工作建立在我使用和开发这种3D成像工具的经验基础上,并利用了该大学世界一流的X射线拍摄设施。每条鱼的头部、肩带和脊椎的X光视频将与这些骨骼的3D模型相匹配,这些模型是由CT扫描建立的,以创建一个精确的3D动画,我可以从中测量每块骨骼的运动。从这些X光视频中,我还将测量颈部运动过程中身体肌肉的长度和形状如何变化。通过学习Nathan Jeffrey博士的对比增强微CT扫描技术,我可以可视化身体肌肉纤维的3D排列。与Karl Bates博士和Kris D'Aout博士合作,我将使用这些图像将虚拟肌肉纤维添加到骨骼动画中:创建纤维方向和肌肉形状变化如何影响肌肉缩短的模型。这项研究将改变我们对颈部起源的看法,并为肌肉动力学提供见解。通过将活体鱼类脊椎的解剖和运动联系起来,这项研究将为理解颈部是如何进化的奠定基础。它还将帮助水产养殖者了解和改善商业鳟鱼的喂养性能。我关于鱼类肌肉形状变化、纤维旋转和缩短的数据可以用来理解人类肌肉如何经历这些相同的动力学过程以及这些动力学在衰老过程中的变化如何影响健康和表现。最后,我将在利物浦世界博物馆和当地科学俱乐部的外展计划中使用这项研究中的引人入胜的3D模型,动画和X射线视频,以激励下一代科学家和创新者。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Axial morphology and 3D neurocranial kinematics in suction-feeding fishes.
- DOI:10.1242/bio.036335
- 发表时间:2018-09-20
- 期刊:
- 影响因子:2.4
- 作者:Jimenez YE;Camp AL;Grindall JD;Brainerd EL
- 通讯作者:Brainerd EL
Royal knifefish generate powerful suction feeding through large neurocranial elevation and high epaxial muscle power
皇家刀鱼通过大的颅神经高度和高的轴外肌肉力量产生强大的吸食
- DOI:10.1242/jeb.244294
- 发表时间:2022
- 期刊:
- 影响因子:2.8
- 作者:Li, Ellen Y.;Kaczmarek, Elska B.;Olsen, Aaron M.;Brainerd, Elizabeth L.;Camp, Ariel L.
- 通讯作者:Camp, Ariel L.
Beam theory predicts muscle deformation and vertebral curvature during feeding in rainbow trout (Oncorhynchus mykiss).
- DOI:10.1242/jeb.245788
- 发表时间:2023-10-15
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Emerging biological insights enabled by high-resolution 3D motion data: promises, perspectives and pitfalls.
- DOI:10.1242/jeb.245138
- 发表时间:2023-04-25
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ariel Camp其他文献
Ariel Camp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ariel Camp', 18)}}的其他基金
US Partnering Award- Robotic models for studying the musculoskeletal systems and bio-inspired design
美国合作奖 - 用于研究肌肉骨骼系统和仿生设计的机器人模型
- 批准号:
BB/T018968/1 - 财政年份:2020
- 资助金额:
$ 35.84万 - 项目类别:
Research Grant
相似国自然基金
通过重测序和 FISH 定位建立豚鼠 SSR 遗传检
测方法的研究
- 批准号:TGD24C040008
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Irisin通过整合素调控黄河鲤肌纤维发育的分子机制研究
- 批准号:32303019
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于单倍型Oligo-FISH的黄瓜-酸黄瓜减数分裂染色体动力学及种间渐渗机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于重复序列Oligo-FISH的菊属植物染色体组组成与系统演化研究
- 批准号:32172613
- 批准年份:2021
- 资助金额:50 万元
- 项目类别:面上项目
草莓属植物亲缘进化关系的比较染色体涂色分析
- 批准号:31871237
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
减数分裂同源染色体配对异常导致油菜种内杂交产量劣势的机制研究及种质创新
- 批准号:31871239
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:面上项目
黑麦6RS染色体广谱抗小麦白粉病新基因PmW6RS的物理定位和小片段易位系的创制
- 批准号:31801358
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
耐盐小冰麦染色体FISH核型及盐胁迫应答转录组分析
- 批准号:31860380
- 批准年份:2018
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
甘薯近缘野生种Ipomoea tabascana(4x)的细胞遗传学研究
- 批准号:31771367
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
冷压力激活玉米串联重复序列的细胞遗传学研究
- 批准号:31571265
- 批准年份:2015
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
Impacts of floating offshore wind infrastructure on the distribution and behaviour of fish and marine mammals: IFLOW
浮动海上风电基础设施对鱼类和海洋哺乳动物的分布和行为的影响:IFLOW
- 批准号:
2744014 - 财政年份:2026
- 资助金额:
$ 35.84万 - 项目类别:
Studentship
A novel anti-biofilm peptide from fish for the combat against antimicrobial resistance
一种来自鱼类的新型抗生物膜肽,用于对抗抗菌素耐药性
- 批准号:
MR/Y503393/1 - 财政年份:2024
- 资助金额:
$ 35.84万 - 项目类别:
Research Grant
A computational weight of evidence platform to understand critical fish specific biology mediating toxicologically relevant responses to stress
证据平台的计算权重,用于了解介导毒理学相关应激反应的关键鱼类特定生物学
- 批准号:
BB/Y512564/1 - 财政年份:2024
- 资助金额:
$ 35.84万 - 项目类别:
Training Grant
Sensory and bioengineering approaches to predict hearing abilities in fish
预测鱼类听力的感官和生物工程方法
- 批准号:
DE240100188 - 财政年份:2024
- 资助金额:
$ 35.84万 - 项目类别:
Discovery Early Career Researcher Award
A computational weight of evidence platform to understand critical fish specific biology mediating toxicologically relevant responses to stress
证据平台的计算权重,用于了解介导毒理学相关应激反应的关键鱼类特定生物学
- 批准号:
2905575 - 财政年份:2024
- 资助金额:
$ 35.84万 - 项目类别:
Studentship
Assessing fish connectivity across highly-modified seascapes
评估高度改造海景中的鱼类连通性
- 批准号:
LP230100262 - 财政年份:2024
- 资助金额:
$ 35.84万 - 项目类别:
Linkage Projects
FishOtlilithPhysio - Fish Otolith Physiology, and Implications for Climate Change, Conservation, and Fisheries Management
FishOtlilithPhysio - 鱼类耳石生理学以及对气候变化、保护和渔业管理的影响
- 批准号:
EP/Y023730/1 - 财政年份:2024
- 资助金额:
$ 35.84万 - 项目类别:
Fellowship
Development of a novel oral vaccine for fish: Synergy of chitosan nano particle and complement-mediated opsonization
新型鱼类口服疫苗的开发:壳聚糖纳米颗粒与补体介导的调理作用的协同作用
- 批准号:
24K17960 - 财政年份:2024
- 资助金额:
$ 35.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Effects of the 2023-24 El Nino on Fish Disease and Population Dynamics in the Galapagos Islands
RAPID:2023-24 年厄尔尼诺现象对加拉帕戈斯群岛鱼类疾病和种群动态的影响
- 批准号:
2348548 - 财政年份:2024
- 资助金额:
$ 35.84万 - 项目类别:
Standard Grant
NSF PRFB FY 2023: Heritable phenotypes and mechanisms through transgenerational plasticity in response to hypoxia in fish
NSF PRFB 2023 财年:通过跨代可塑性响应鱼类缺氧的遗传表型和机制
- 批准号:
2305837 - 财政年份:2024
- 资助金额:
$ 35.84万 - 项目类别:
Fellowship Award