Improving the penicillin fermentation by modelling and optimising its metabolic network and transporterome
通过建模和优化青霉素的代谢网络和转运体来改善青霉素发酵
基本信息
- 批准号:BB/R014744/1
- 负责人:
- 金额:$ 54.65万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Penicillin was famously (re)discovered by Alexander Fleming in 1928, and developed into an initial fermentation process by Florey, Chain and Heatley during the early 1940s. Despite increasing antimicrobial resistance, it remains one of the UK fermentation industry's top products (often combined with the penicillinase inhibitor clavulanic acid in products such as Augmentin). However, in terms of the efficiency of conversion of carbon in the sugar feedstock to carbon in the penicillin product it is a lousy fermentation as this efficiency is no more than 10%. Many other fermentations, such as that producing monosodium glutamate, have a carbon conversion efficiency approaching 100%. Consequently, there is much room for improvement, and for making the penicillin process more competitive economically. As with the design of engineering artefacts such as the Boeing 777, what is needed is a mathematical model of the metabolic network of the penicillin producer, P. chrysogenum. The amount that each gene is expressed tells us what is going on, and is known as the transcriptome. To this end, transcriptome data FROM THE PRODUCTION STRAIN ITSELF will be made available by GSK. From the (known) genome sequence we can produce a computer version of the metabolic network for analysis. Importantly, the media used for the penicillin process are fully defined, which makes it feasible to do this modelling. Having produced the model, we can predict, initially qualitatively, what molecules it will produce, and these will be measured experimentally on extracts of cells and medium provided by GSK. The combination of the model and the transcriptome allows us to calculate all the fluxes, both to product and to non-profitable places. This will help determine which changes in the genetic make-up of the Penicillium fungi are most likely to lead to a higher carbon conversion efficiency. These changes will be made (by GSK) and tested on the new production strains. The ability to do these analyses on cell extracts and inside a computer means that while we have access to the data we neither have nor need access to the proprietary production strains themselves.Importantly, we shall curate all of the data in a suitable database.
青霉素是著名的(重新)发现亚历山大弗莱明在1928年,并发展成为一个初步的发酵过程中弗洛里,链和希特利在20世纪40年代初。尽管耐药性不断增加,但它仍然是英国发酵工业的顶级产品之一(通常与青霉素酶抑制剂克拉维酸结合使用,如Augmentin)。然而,就糖原料中的碳转化为青霉素产物中的碳的效率而言,这是一种糟糕的发酵,因为该效率不超过10%。许多其他发酵,如生产谷氨酸的发酵,碳转化效率接近100%。因此,有很大的改进余地,使青霉素工艺在经济上更具竞争力。与波音777等工程人工制品的设计一样,需要的是青霉素生产者产黄青霉代谢网络的数学模型。每个基因的表达量告诉我们发生了什么,被称为转录组。为此,GSK将提供生产菌株本身的转录组数据。从(已知的)基因组序列中,我们可以生成代谢网络的计算机版本以供分析。重要的是,用于青霉素工艺的培养基是完全确定的,这使得进行这种建模是可行的。在建立模型之后,我们可以初步定性地预测它将产生什么样的分子,这些分子将在GSK提供的细胞提取物和培养基上进行实验测量。模型和转录组的结合使我们能够计算所有的流量,包括产品和非盈利场所。这将有助于确定青霉属真菌遗传组成的哪些变化最有可能导致更高的碳转化效率。这些变更将由GSK进行,并在新生产菌株上进行检测。在细胞提取物和计算机内部进行这些分析的能力意味着,虽然我们可以访问数据,但我们既没有也不需要访问专有生产菌株本身。重要的是,我们将在合适的数据库中管理所有数据。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Intelligent host engineering for metabolic flux optimisation in biotechnology.
- DOI:10.1042/bcj20210535
- 发表时间:2021-10-29
- 期刊:
- 影响因子:0
- 作者:Munro LJ;Kell DB
- 通讯作者:Kell DB
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Douglas Kell其他文献
Douglas Kell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Douglas Kell', 18)}}的其他基金
MUSERGEN: MultiUSER equipment for GENe identification in biosciences and biotechnology
MUSERGEN:用于生物科学和生物技术中基因识别的多用户设备
- 批准号:
BB/T017481/1 - 财政年份:2020
- 资助金额:
$ 54.65万 - 项目类别:
Research Grant
Untargeted metabolomics of serum samples during COVID-19 disease progression
COVID-19 疾病进展期间血清样本的非靶向代谢组学
- 批准号:
BB/V003976/1 - 财政年份:2020
- 资助金额:
$ 54.65万 - 项目类别:
Research Grant
MUSERMET: MultiUSER equipment for small molecule identification in untargeted METabolomics
MUSERMET:用于非靶向代谢组学中小分子鉴定的 MultiUSER 设备
- 批准号:
BB/S019030/1 - 财政年份:2019
- 资助金额:
$ 54.65万 - 项目类别:
Research Grant
Synthetic biology of transporters and other enzymes in yeast
酵母中转运蛋白和其他酶的合成生物学
- 批准号:
BB/N021037/2 - 财政年份:2019
- 资助金额:
$ 54.65万 - 项目类别:
Research Grant
GeneORator: a novel and high-throughput method for the synthetic biology-based improvement of any enzyme
GeneORator:一种新颖的高通量方法,用于基于合成生物学的任何酶的改进
- 批准号:
BB/S004955/1 - 财政年份:2019
- 资助金额:
$ 54.65万 - 项目类别:
Research Grant
The roles of transporters in the human metabolic network
转运蛋白在人体代谢网络中的作用
- 批准号:
BB/P009042/2 - 财政年份:2018
- 资助金额:
$ 54.65万 - 项目类别:
Research Grant
MultiUSer equipment for high-throughput, high-content analysis in Industrial and Cellular biotechnology (MUSIC)
用于工业和细胞生物技术 (MUSIC) 中高通量、高内涵分析的多用户设备
- 批准号:
BB/R000093/1 - 财政年份:2017
- 资助金额:
$ 54.65万 - 项目类别:
Research Grant
The roles of transporters in the human metabolic network
转运蛋白在人体代谢网络中的作用
- 批准号:
BB/P009042/1 - 财政年份:2017
- 资助金额:
$ 54.65万 - 项目类别:
Research Grant
Synthetic biology of transporters and other enzymes in yeast
酵母中转运蛋白和其他酶的合成生物学
- 批准号:
BB/N021037/1 - 财政年份:2016
- 资助金额:
$ 54.65万 - 项目类别:
Research Grant
Continued development of ChEBI towards better usability for the systems biology and metabolic modelling community
持续开发 ChEBI,以提高系统生物学和代谢建模社区的可用性
- 批准号:
BB/K019783/1 - 财政年份:2013
- 资助金额:
$ 54.65万 - 项目类别:
Research Grant
相似海外基金
Charting the fitness landscape of a penicillin-binding protein
绘制青霉素结合蛋白的适应度图
- 批准号:
MR/X007421/1 - 财政年份:2023
- 资助金额:
$ 54.65万 - 项目类别:
Fellowship
Improving Equitable Access to Penicillin Allergy De-Labeling
改善青霉素过敏取消标签的公平获取
- 批准号:
10634897 - 财政年份:2023
- 资助金额:
$ 54.65万 - 项目类别:
Susceptibility and resistance of multidrug-resistant gram-negative bacteria to novel beta-lactam/beta-lactamase inhibitor combinations
多重耐药革兰氏阴性菌对新型β-内酰胺/β-内酰胺酶抑制剂组合的敏感性和耐药性
- 批准号:
10748676 - 财政年份:2023
- 资助金额:
$ 54.65万 - 项目类别:
Understanding how penicillin resistance develops in Streptococcus pneumoniae clinical populations
了解肺炎链球菌临床人群中青霉素耐药性如何发展
- 批准号:
2902003 - 财政年份:2023
- 资助金额:
$ 54.65万 - 项目类别:
Studentship
Characterizing the Function of the Periplasmic Protease Tsp in Chlamydial Secondary Differentiation
周质蛋白酶 Tsp 在衣原体二次分化中的功能特征
- 批准号:
10666924 - 财政年份:2023
- 资助金额:
$ 54.65万 - 项目类别:
Optimization of Atypical Antimycobacterial Carbapenem Antibiotics
非典型抗分枝杆菌碳青霉烯类抗生素的优化
- 批准号:
10736024 - 财政年份:2023
- 资助金额:
$ 54.65万 - 项目类别:
Serine/threonine kinase signaling in beta-lactam resistance of Staphylococcus aureus
金黄色葡萄球菌 β-内酰胺耐药中的丝氨酸/苏氨酸激酶信号传导
- 批准号:
10582130 - 财政年份:2023
- 资助金额:
$ 54.65万 - 项目类别:
Decoding the Mechanisms of Beta-Lactam Resistance in Streptococcus suis: A Genomic, Structural and Epidemiological Analysis.
解读猪链球菌β-内酰胺耐药机制:基因组、结构和流行病学分析。
- 批准号:
489695 - 财政年份:2023
- 资助金额:
$ 54.65万 - 项目类别:
Operating Grants
Developing novel pyrazolidinone antibiotics targeting PBP3 to overcome resistance mechanisms
开发针对 PBP3 的新型吡唑烷酮抗生素以克服耐药机制
- 批准号:
10590839 - 财政年份:2023
- 资助金额:
$ 54.65万 - 项目类别:
Intramuscular vs. Enteral Penicillin Prophylaxis to Prevent Progression of Latent Rheumatic Heart Disease: A non-inferiority randomized trial. (GOALIE)
肌肉注射与肠内青霉素预防预防潜在风湿性心脏病进展:一项非劣效性随机试验。
- 批准号:
10571212 - 财政年份:2023
- 资助金额:
$ 54.65万 - 项目类别: