Cyclic oligoadenylate signalling - a new type of antiviral response

环状寡腺苷酸信号传导 - 一种新型抗病毒反应

基本信息

  • 批准号:
    BB/S000313/1
  • 负责人:
  • 金额:
    $ 57.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

All living things have evolved the ability to respond to changes in their environment in a way that maximises their fitness. For example, bacteria swim towards a food source, and away from a harmful chemical. To achieve this, they need a way to convert an environmental signal into a signal inside the cell, and they do this with a class of molecules called "second messengers". In 2017 an entirely new class of second messengers was discovered in bacteria and archaea: cyclic oligoadenylates (cOA). cOA molecules are made by joining together molecules of Adenosine triphosphate (ATP) to form rings of 3, 4, 5 and 6 building blocks. The enzyme that makes cOA is a cyclase that is part of a large complex important in the CRISPR system. This effector complex, which goes by several names (Csm, Cmr, Type III) can sense the presence of a virus in the cell by binding specifically to its genetic material. When the viral RNA is bound, the cyclase is switched on and cOA second messengers are synthesised to signal to the cell that it is infected. This sets in chain an antiviral response that includes changes in gene expression and activation of ribonucleases (RNA cutting enzymes) that degrade RNA in the cell. This might help buy some time for the cell to kill the virus, or alternatively might push the cell into dormancy or even death. Any of these outcomes, while not necessarily good for the cell, can be good for the cell's neighbours. And as these neighbours tend to be related, this process is favoured by evolution as it stops infection spreading.In this grant, we propose to study this new cOA signalling system in a model organism known as Sulfolobus solfataricus - which is found in volcanic pools, thriving at high temperatures and acidic conditions. Sulfolobus is an ideal model system for the biochemical, genetic and structural studies we want to carry out. It has a well understood CRISPR system and a good number of proteins activated by the cOA signalling molecule. We will examine how cOA is synthesised and degraded, and how it binds to and activates the downstream proteins that elicit the antiviral response. The work will help us to understand the fundamental properties of this exciting new antiviral signalling system. Since many crop and human pathogens have CRISPR type III systems, this work could ultimately find application in new methods to combat these diseases. The proposal fits well with the BBSRC strategic priority area: Integrative Microbiome Research.
所有生物都进化出了对环境变化做出反应的能力,以最大限度地提高它们的适应性。例如,细菌游向食物来源,远离有害的化学物质。为了实现这一目标,他们需要一种方法将环境信号转换为细胞内的信号,他们用一类称为“第二信使”的分子来做到这一点。2017年,在细菌和古细菌中发现了一类全新的第二信使:环状寡腺苷酸(cOA)。cOA分子是通过将三磷酸腺苷(ATP)分子连接在一起形成3、4、5和6个结构单元的环而制成的。制造cOA的酶是一种环化酶,是CRISPR系统中重要的大型复合物的一部分。这种效应复合物有几个名字(Csm,Cmr,III型),可以通过特异性结合其遗传物质来感知细胞中病毒的存在。当病毒RNA被结合时,环化酶被打开,cOA第二信使被合成,向细胞发出它被感染的信号。这就引发了一系列的抗病毒反应,包括基因表达的变化和细胞内降解RNA的核糖核酸酶(RNA切割酶)的激活。这可能有助于为细胞杀死病毒争取一些时间,或者可能使细胞进入休眠甚至死亡。这些结果中的任何一个,虽然不一定对细胞有利,但对细胞的邻居都有好处。由于这些邻居往往是相关的,这一过程是有利于进化的,因为它阻止了感染的传播。在这项资助中,我们建议在一种名为Sulfolobus solfataricus的模式生物中研究这种新的cOA信号系统-这种模式生物在火山池中发现,在高温和酸性条件下蓬勃发展。硫化叶菌是我们想要进行的生化、遗传和结构研究的理想模型系统。它有一个很好理解的CRISPR系统和大量由cOA信号分子激活的蛋白质。我们将研究cOA是如何合成和降解的,以及它如何结合并激活引发抗病毒反应的下游蛋白质。这项工作将帮助我们了解这种令人兴奋的新的抗病毒信号系统的基本特性。由于许多作物和人类病原体都具有CRISPR III型系统,这项工作最终可能会应用于对抗这些疾病的新方法。该提案非常符合BBSRC的战略优先领域:综合微生物组研究。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cyclic oligoadenylate signalling and regulation by ring nucleases during type III CRISPR defence.
  • DOI:
    10.1261/rna.078739.121
  • 发表时间:
    2021-05-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Athukoralage JS;White MF
  • 通讯作者:
    White MF
Cyclic Nucleotide Signaling in Phage Defense and Counter-Defense
  • DOI:
    10.1146/annurev-virology-100120-010228
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
    11.3
  • 作者:
    Athukoralage, Januka S.;White, Malcolm F.
  • 通讯作者:
    White, Malcolm F.
Tetramerisation of the CRISPR ring nuclease Csx3 facilitates cyclic oligoadenylate cleavage
  • DOI:
    10.1101/2020.04.28.066118
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Januka S. Athukoralage;S. McQuarrie;S. Grüschow;S. Graham;T. Gloster;M. F. White
  • 通讯作者:
    Januka S. Athukoralage;S. McQuarrie;S. Grüschow;S. Graham;T. Gloster;M. F. White
The dynamic interplay of host and viral enzymes in type III CRISPR-mediated cyclic nucleotide signalling
  • DOI:
    10.1101/2020.02.12.946046
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Januka S. Athukoralage;S. Graham;Christophe Rouillon;S. Grüschow;C. Czekster;M. F. White
  • 通讯作者:
    Januka S. Athukoralage;S. Graham;Christophe Rouillon;S. Grüschow;C. Czekster;M. F. White
A Type III CRISPR Ancillary Ribonuclease Degrades Its Cyclic Oligoadenylate Activator
  • DOI:
    10.1101/582114
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Januka S. Athukoralage;S. Graham;Sabine Grueschow;Christophe Rouillon;M. F. White
  • 通讯作者:
    Januka S. Athukoralage;S. Graham;Sabine Grueschow;Christophe Rouillon;M. F. White
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Malcolm White其他文献

Calibration of an Absolute Radiation Thermometer for Accurate Determination of Fixed-Point Temperatures
  • DOI:
    10.1007/s10765-007-0275-y
  • 发表时间:
    2007-10-11
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    R. Winkler;E. R. Woolliams;W. S. Hartree;S. G. R. Salim;N. P. Fox;J. R. Mountford;Malcolm White;S. R. Montgomery
  • 通讯作者:
    S. R. Montgomery
The Design and Development of an Integrated Multi-Functional Microwave Antenna Structure for Biological Applications
生物应用集成多功能微波天线结构的设计与开发

Malcolm White的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Malcolm White', 18)}}的其他基金

Dissecting the Molecular Biology of Cyclic Oligoadenylate Signalling
剖析环状寡腺苷酸信号转导的分子生物学
  • 批准号:
    BB/T004789/1
  • 财政年份:
    2020
  • 资助金额:
    $ 57.84万
  • 项目类别:
    Research Grant
Nucleotide Excision Repair - Lighting up a Dark Pathway
核苷酸切除修复——照亮黑暗之路
  • 批准号:
    BB/R015570/1
  • 财政年份:
    2018
  • 资助金额:
    $ 57.84万
  • 项目类别:
    Research Grant
CRISPR Adaptation - the basis for prokaryotic adaptive immunity
CRISPR适应——原核生物适应性免疫的基础
  • 批准号:
    BB/M021017/1
  • 财政年份:
    2015
  • 资助金额:
    $ 57.84万
  • 项目类别:
    Research Grant
CRISPR-mediated DNA cleavage by the CSM complex
CSM 复合物介导的 CRISPR 介导的 DNA 切割
  • 批准号:
    BB/M000400/1
  • 财政年份:
    2014
  • 资助金额:
    $ 57.84万
  • 项目类别:
    Research Grant
The CMR complex for prokaryotic RNA silencing
用于原核RNA沉默的CMR复合物
  • 批准号:
    BB/K000314/1
  • 财政年份:
    2012
  • 资助金额:
    $ 57.84万
  • 项目类别:
    Research Grant
Elucidating the molecular architecture of the Archaeal CMR complex, a key player in the unicellular immune response.
阐明古菌 CMR 复合体的分子结构,该复合体是单细胞免疫反应的关键参与者。
  • 批准号:
    BB/J005665/1
  • 财政年份:
    2012
  • 资助金额:
    $ 57.84万
  • 项目类别:
    Research Grant
The CRISPR system: a new frontier in prokaryotic molecular biology
CRISPR系统:原核分子生物学的新前沿
  • 批准号:
    BB/G011400/1
  • 财政年份:
    2009
  • 资助金额:
    $ 57.84万
  • 项目类别:
    Research Grant
Mechanism interactions and function of the structure specific nuclease XPF
结构特异性核酸酶 XPF 的相互作用机制和功能
  • 批准号:
    BB/D001439/1
  • 财政年份:
    2006
  • 资助金额:
    $ 57.84万
  • 项目类别:
    Research Grant

相似海外基金

New roles of IFN-inducible OAS proteins in innate immune defense against bacterial infections
IFN诱导的OAS蛋白在针对细菌感染的先天免疫防御中的新作用
  • 批准号:
    10649771
  • 财政年份:
    2023
  • 资助金额:
    $ 57.84万
  • 项目类别:
Antiviral innate immune responses to pathogenic coronaviruses in the nasal epithelium
鼻上皮中针对致病性冠状病毒的抗病毒先天免疫反应
  • 批准号:
    10678393
  • 财政年份:
    2023
  • 资助金额:
    $ 57.84万
  • 项目类别:
Experimental identification of functional GWAS variants linked to COVID-19 severity in immune cells
免疫细胞中与 COVID-19 严重程度相关的功能性 GWAS 变异的实验鉴定
  • 批准号:
    10741007
  • 财政年份:
    2023
  • 资助金额:
    $ 57.84万
  • 项目类别:
Stress granules in virus infections
病毒感染中的应激颗粒
  • 批准号:
    10578897
  • 财政年份:
    2023
  • 资助金额:
    $ 57.84万
  • 项目类别:
Targeted mRNA therapies treating ARDS
治疗 ARDS 的靶向 mRNA 疗法
  • 批准号:
    10740571
  • 财政年份:
    2023
  • 资助金额:
    $ 57.84万
  • 项目类别:
Host genetic determinants of neuroinvasive flavivirus pathogenesis
神经侵袭性黄病毒发病机制的宿主遗传决定因素
  • 批准号:
    10576806
  • 财政年份:
    2022
  • 资助金额:
    $ 57.84万
  • 项目类别:
Host genetic determinants of neuroinvasive flavivirus pathogenesis
神经侵袭性黄病毒发病机制的宿主遗传决定因素
  • 批准号:
    10387019
  • 财政年份:
    2022
  • 资助金额:
    $ 57.84万
  • 项目类别:
Understanding how the MERS Coronavirus protein ORF4b interactions with importin alpha modulate innate immunity
了解 MERS 冠状病毒蛋白 ORF4b 与 importin alpha 的相互作用如何调节先天免疫
  • 批准号:
    10289173
  • 财政年份:
    2021
  • 资助金额:
    $ 57.84万
  • 项目类别:
The role of m6A RNA modification as modulator of dsRNA induced cell-intrinsic innate immune responses in hematopoiesis
m6A RNA 修饰作为 dsRNA 调节剂在造血过程中诱导细胞内在先天免疫反应的作用
  • 批准号:
    10676211
  • 财政年份:
    2021
  • 资助金额:
    $ 57.84万
  • 项目类别:
dsRNA production and sensing during DNA virus infection
DNA病毒感染过程中dsRNA的产生和传感
  • 批准号:
    10460518
  • 财政年份:
    2021
  • 资助金额:
    $ 57.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了