Delineating the roles of GPR55 in cellular metabolism and energy homeostasis

描述 GPR55 在细胞代谢和能量稳态中的作用

基本信息

  • 批准号:
    BB/S00033X/1
  • 负责人:
  • 金额:
    $ 52.4万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

The G-protein coupled receptor (GPCR) superfamily play crucial roles in cell communication. As such, they mediate the effects of circulating hormones and other biologically active molecules across the blood-facing membranes of cells to regulate diverse cell/tissue processes including, for example, sensory perception, metabolism and satiety. Given their involvement in neurological disorders, inflammatory and metabolic diseases, diabetes and cardiac dysfunction they represent the largest and most successful class of "druggable" targets in the human body. However, despite the immense current interest in GPCR biology, the function of numerous members of this family remain poorly understood, but which may well represent important therapeutic targets for treatment of major public health issues, such as obesity, diabetes and cardiovascular disease. This project aims to explore links between a lipid sensing GPCR, called GPR55, and processes influencing adiposity, inflammation, cardiac function and response to insulin within key metabolic tissues, such as white fat, liver, skeletal muscle and heart. These tissues are major targets for insulin in the body and represent the principal sites where sugar (glucose) and fat are stored and metabolised in response to the hormone. GPR55 is stimulated by a circulating lipid called LPI, which we find improves the response of these metabolic tissues to insulin and also helps lower inflammatory drive in cells derived from them. Crucially, this LPI-mediated response is lost if cells are co-treated with a GPR55 inhibitor. Strikingly, we have discovered that animals deficient in this lipid sensor exhibit reduced tissue responsiveness to insulin, impaired metabolic capacity and a decline in cardiac performance. Metabolic capacity is crucially dependent upon mitochondria; structures within cells representing the cell's "energy generator". Significantly, animals lacking GPR55 show changes in mitochondrial biology consistent with a reduced ability to "burn" fat. In line with this, we find animals lacking GPR55 develop obesity and that inhibiting the receptor in cultured adipocytes (fat cells) induces proteins that help make more fat, which would augment the process of obesity. Precisely how GPR55 links to the molecular regulation of the above processes is currently unclear. The studies described in this application will utilise cells in culture from rodent and human origin as well as mouse tissues for laboratory-based analysis to help dissect out the role GPR55 plays not only with respect to insulin action and inflammation, but in control of tissue adiposity (fatness) and cardiac function. The project will also explore whether GPR55 activation helps mitigate the increase in fat gain, the loss in tissue sensitivity to insulin and cardiac dysfunction in mice fed a high fat calorie diet. Tissues taken from animals at the end of such studies will be processed for biochemical analysis and state-of-the-art whole cell/tissue protein profiling - an approach that will identify which proteins become up- or down-regulated in tissues of mice lacking GPR55 or in cells in which GPR55 has been activated/inhibited with selective drugs. This methodology will generate a wealth of information, potentially unveiling novel proteins that connect with GPR55 to regulate how insulin works or fat is stored or "burnt". Importantly, the large scale protein profiling may flag-up proteins that have not previously been linked to GPR55, but which may be central to the work of researchers in other fields thus providing an invaluable data resource to the scientific community. Collectively, our pilot studies indicate GPR55 may function as a novel metabolic regulator within tissues and suggest that understanding how it regulates insulin action, lipid metabolism and cardiac function may offer new pharmacological opportunities for treatment of metabolic disorders associated with conditions such as obesity and type II diabetes.
g蛋白偶联受体(GPCR)超家族在细胞通讯中起着重要作用。因此,它们介导循环激素和其他生物活性分子穿过面向血液的细胞膜的影响,以调节各种细胞/组织过程,包括,例如,感官知觉,代谢和饱腹感。鉴于它们涉及神经系统疾病、炎症和代谢疾病、糖尿病和心功能障碍,它们代表了人体中最大和最成功的一类“可药物”靶标。然而,尽管目前对GPCR生物学有着巨大的兴趣,但该家族许多成员的功能仍然知之甚少,但它们很可能代表了治疗重大公共卫生问题(如肥胖、糖尿病和心血管疾病)的重要治疗靶点。该项目旨在探索脂质感应GPCR(称为GPR55)与关键代谢组织(如白色脂肪、肝脏、骨骼肌和心脏)中影响肥胖、炎症、心功能和胰岛素反应的过程之间的联系。这些组织是体内胰岛素的主要目标,代表了糖(葡萄糖)和脂肪储存和代谢的主要部位,以响应激素。GPR55受到一种叫做LPI的循环脂质的刺激,我们发现它改善了这些代谢组织对胰岛素的反应,也有助于降低来自它们的细胞的炎症驱动。关键是,如果细胞与GPR55抑制剂共同处理,这种lpi介导的反应就会丢失。引人注目的是,我们发现缺乏这种脂质传感器的动物表现出对胰岛素的组织反应性降低、代谢能力受损和心脏功能下降。代谢能力至关重要地依赖于线粒体;细胞内的结构代表细胞的“能量发生器”。值得注意的是,缺乏GPR55的动物在线粒体生物学上的变化与“燃烧”脂肪的能力下降一致。与此相一致,我们发现缺乏GPR55的动物会发生肥胖,而抑制培养的脂肪细胞(脂肪细胞)中的受体会诱导有助于产生更多脂肪的蛋白质,从而增加肥胖的过程。目前尚不清楚GPR55究竟如何与上述过程的分子调控联系起来。本申请中描述的研究将利用来自啮齿动物和人类的培养细胞以及小鼠组织进行实验室分析,以帮助解剖GPR55不仅在胰岛素作用和炎症方面发挥作用,而且在组织脂肪(肥胖)和心脏功能的控制方面发挥作用。该项目还将探索GPR55的激活是否有助于减轻高脂肪卡路里饮食小鼠脂肪增加的增加、胰岛素组织敏感性的丧失和心功能障碍。在这些研究结束时,从动物身上提取的组织将被处理用于生化分析和最先进的全细胞/组织蛋白质谱分析——这种方法将确定在缺乏GPR55的小鼠组织中,或在GPR55被选择性药物激活/抑制的细胞中,哪些蛋白质被上调或下调。这种方法将产生丰富的信息,有可能揭示与GPR55相关的新蛋白质,以调节胰岛素的工作方式或脂肪的储存或“燃烧”。重要的是,大规模的蛋白质分析可能会标记出以前没有与GPR55相关的蛋白质,但这可能是其他领域研究人员工作的核心,从而为科学界提供宝贵的数据资源。总的来说,我们的初步研究表明GPR55可能在组织中作为一种新的代谢调节剂发挥作用,并表明了解它如何调节胰岛素作用、脂质代谢和心脏功能可能为治疗与肥胖和II型糖尿病等疾病相关的代谢紊乱提供新的药理学机会。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CDK7 is a component of the integrated stress response regulating SNAT2 (SLC38A2)/System A adaptation in response to cellular amino acid deprivation.
CDK7 是调节 SNAT2 (SLC38A2)/系统 A 适应以响应细胞氨基酸剥夺的综合应激反应的一个组成部分。
GPR55 deficiency is associated with increased adiposity and impaired insulin signaling in peripheral metabolic tissues.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hari Hundal其他文献

Michael John Rennie, MSc, PhD, FRSE, FHEA, 1946-2017: an appreciation of his work on protein metabolism in human muscle.
Michael John Rennie,理学硕士、博士、FRSE、FHEA,1946-2017:对他在人体肌肉蛋白质代谢方面的工作的赞赏。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    7.1
  • 作者:
    D. Millward;D. Halliday;Hari Hundal;P. Taylor;Philip Atherton;P. Greenhaff;Kenny Smith
  • 通讯作者:
    Kenny Smith

Hari Hundal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hari Hundal', 18)}}的其他基金

Defining the molecular roles of peripheral CB1 and CB2 cannabinoid receptors in age-induced changes in energy and metabolic homeostasis.
定义外周 CB1 和 CB2 大麻素受体在年龄引起的能量和代谢稳态变化中的分子作用。
  • 批准号:
    BB/N002342/1
  • 财政年份:
    2016
  • 资助金额:
    $ 52.4万
  • 项目类别:
    Research Grant
Non-genomic mechanisms stabilizing the abundance of SNAT2 a nutrient transceptor protein in response to diverse catabolic signals
稳定营养转运蛋白 SNAT2 丰度的非基因组机制,以响应不同的分解代谢信号
  • 批准号:
    BB/I007261/1
  • 财政年份:
    2011
  • 资助金额:
    $ 52.4万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319848
  • 财政年份:
    2024
  • 资助金额:
    $ 52.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319849
  • 财政年份:
    2024
  • 资助金额:
    $ 52.4万
  • 项目类别:
    Standard Grant
Chemical staples and chemical probes to dissect dynamins cellular roles.
用于剖析动力细胞作用的化学钉书和化学探针。
  • 批准号:
    DP240100514
  • 财政年份:
    2024
  • 资助金额:
    $ 52.4万
  • 项目类别:
    Discovery Projects
A genome wide investigation into the roles of error-prone polymerases during human DNA replication
对易错聚合酶在人类 DNA 复制过程中的作用进行全基因组研究
  • 批准号:
    24K18094
  • 财政年份:
    2024
  • 资助金额:
    $ 52.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Roles of immune cells derived from clonal hematopoiesis in B-cell lymphomas
克隆造血来源的免疫细胞在 B 细胞淋巴瘤中的作用
  • 批准号:
    24K19213
  • 财政年份:
    2024
  • 资助金额:
    $ 52.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
BeyondSNO: Signalling beyond protein S-nitrosylation - determining the roles of nitroxyl and hydroxylamine
BeyondSNO:蛋白质 S-亚硝基化之外的信号传导 - 确定硝酰基和羟胺的作用
  • 批准号:
    EP/Y027698/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.4万
  • 项目类别:
    Research Grant
Roles of emerging pollutants in spreading antimicrobial resistance
新出现的污染物在传播抗菌素耐药性方面的作用
  • 批准号:
    DE240100842
  • 财政年份:
    2024
  • 资助金额:
    $ 52.4万
  • 项目类别:
    Discovery Early Career Researcher Award
Uncovering the unconventional and multifaceted roles of histamine in bacterial infection
揭示组胺在细菌感染中的非常规和多方面的作用
  • 批准号:
    502559
  • 财政年份:
    2024
  • 资助金额:
    $ 52.4万
  • 项目类别:
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319850
  • 财政年份:
    2024
  • 资助金额:
    $ 52.4万
  • 项目类别:
    Standard Grant
Two-Dimensional Magnets in Spintronic Devices: Roles of Spin Fluctuations
自旋电子器件中的二维磁体:自旋涨落的作用
  • 批准号:
    2401267
  • 财政年份:
    2024
  • 资助金额:
    $ 52.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了