The Flux Capacitor: How mitochondria modulate metabolic flux and gene expression
通量电容器:线粒体如何调节代谢通量和基因表达
基本信息
- 批准号:BB/S003681/1
- 负责人:
- 金额:$ 118.6万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mitochondria are often called the powerhouses of the cell as they produce nearly all the energy needed for living. Recent research shows that mitochondria do much more than generate energy: they integrate virtually all metabolic inputs and outputs of cells. These inputs and outputs depend on diet, temperature, growth, age and physical demands. If mitochondria cannot match metabolic supply to demand, they signal a stress state to the nucleus resulting in changes in the activity of genes. These changes might ameliorate the stress, or if that fails, tip the cell towards programmed death. Mitochondria can be seen as 'flux capacitors'.The problem is that mitochondria are uniquely vulnerable to mechanical faults. This is because the vital proteins that carry out respiration are encoded by two different genomes that have a tendency to diverge - genes in the mitochondria mutate nearly 50 times faster than those in the nucleus, and are inherited from the mother only, whereas genes in the nucleus are recombined by sex every generation. These radical differences in inheritance can result in mismatches that affect the performance of mitochondria - the flux capacitor itself becomes faulty, which impacts on both the inputs and outputs of the cell, and its stress state. Mutations in either the mitochondrial or nuclear genes encoding the proteins involved in respiration can cause catastrophic diseases, and more subtle genetic differences contribute to common conditions such as diabetes, cancer, neurodegeneration and ageing. But the extent to which mismatches between mitochondrial and nuclear genes affect health through the lifecourse is uncertain, as there are hundreds of mitochondria in every cell, and their performance can differ substantially. Animal models show that 'mitonuclear mismatches' really do affect health, for example causing male infertility and altered lifespan. Even when the health effects are too subtle to notice, mitonuclear mismatches can alter the activity of thousands of genes. Because these mismatches are produced every generation, they most likely have substantial health impacts. Until recently, though, this has been nearly impossible to verify. Our programme of research will analyse how mitonuclear mismatches affect the inputs and outputs of mitochondria, and how these changes impact on gene activity and health. We will use a model organism, the fruitfly Drosophila, in which mitochondrial genes have been deliberately mismatched to the nuclear genome. These flies have known health outcomes such as male infertility, but how their faulty mitochondria cause these defects is unknown; treatments that might improve their health are unknown for the same reasons. We will address these questions using cutting-edge experimental methods. Specifically, we will measure mitochondrial performance in real time to establish how mitonuclear mismatches alter the function of different tissues over the lifecourse of males and females, and how mitochondrial performance is altered by dietary treatments. We will generate global profiles of metabolite levels, allowing us to relate mitochondrial function to the 'metabolomic profile' of each tissue. Finally, we will use Next Generation Sequencing to measure changes in gene activity in each tissue, with each treatment, in males and females. We will use this information to build a set of mathematical models that map changes in mitochondrial function to shifts in metabolic flux, gene activity and health, allowing us to generalise our conclusions to be valuable for human and animal health.Our pilot studies show that we can indeed measure real-time changes in mitochondrial performance linked with male infertility. Antioxidant treatments have remarkably different outcomes depending on mitonuclear mismatches, in one case improving male fertility yet causing high (90%) mortality in female flies. We therefore anticipate our findings will have important implications for lifelong health.
线粒体通常被称为细胞的发电站,因为它们产生几乎所有生活所需的能量。最近的研究表明,线粒体不仅仅是产生能量:它们整合了细胞几乎所有的代谢输入和输出。这些投入和产出取决于饮食、温度、生长、年龄和身体需求。如果线粒体不能使代谢的供给与需求相匹配,它们就会向细胞核发出压力状态的信号,从而导致基因活性的变化。这些变化可能会减轻压力,或者如果失败,则会使细胞走向程序性死亡。线粒体可以被看作是“通量电容器”,问题是线粒体特别容易受到机械故障的影响。这是因为进行呼吸的重要蛋白质是由两个不同的基因组编码的,这两个基因组有分化的趋势-线粒体中的基因突变的速度比细胞核中的基因快近50倍,并且只从母亲那里遗传,而细胞核中的基因每一代都会通过性别重组。这些遗传上的根本差异可能导致影响线粒体性能的失配-通量电容器本身出现故障,这会影响细胞的输入和输出及其压力状态。编码参与呼吸的蛋白质的线粒体或核基因的突变可能导致灾难性的疾病,更微妙的遗传差异会导致糖尿病,癌症,神经退行性疾病和衰老等常见疾病。但是,线粒体和核基因之间的不匹配在多大程度上影响整个生命过程中的健康是不确定的,因为每个细胞中有数百个线粒体,它们的表现可能有很大差异。动物模型表明,“线粒体不匹配”确实会影响健康,例如导致男性不育和寿命改变。即使对健康的影响太细微而不易察觉,线粒体的错配也会改变数千个基因的活性。由于这些不匹配每一代都会产生,它们很可能会对健康产生重大影响。然而,直到最近,这几乎是不可能核实的。我们的研究计划将分析线粒体错配如何影响线粒体的输入和输出,以及这些变化如何影响基因活性和健康。我们将使用一种模式生物,果蝇,其中线粒体基因被故意错配到核基因组。这些果蝇具有已知的健康结果,如男性不育,但它们有缺陷的线粒体如何导致这些缺陷尚不清楚;出于同样的原因,可能改善其健康的治疗方法也是未知的。我们将使用尖端的实验方法来解决这些问题。具体来说,我们将在真实的时间内测量线粒体性能,以确定线粒体错配如何改变男性和女性生命过程中不同组织的功能,以及饮食治疗如何改变线粒体性能。我们将生成代谢物水平的全球概况,使我们能够将线粒体功能与每个组织的“代谢组学概况”联系起来。最后,我们将使用下一代测序技术来测量男性和女性每种组织中基因活性的变化。我们将利用这些信息建立一套数学模型,将线粒体功能的变化映射到代谢通量、基因活性和健康的变化,使我们能够概括我们的结论,对人类和动物的健康有价值。我们的初步研究表明,我们确实可以测量与男性不育相关的线粒体功能的实时变化。抗氧化剂治疗有显着不同的结果取决于线粒体不匹配,在一种情况下,提高男性生育能力,但导致高(90%)死亡率的女性苍蝇。因此,我们预计我们的发现将对终身健康产生重要影响。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The need for high-quality oocyte mitochondria at extreme ploidy dictates mammalian germline development.
- DOI:10.7554/elife.69344
- 发表时间:2021-07-19
- 期刊:
- 影响因子:7.7
- 作者:Colnaghi M;Pomiankowski A;Lane N
- 通讯作者:Lane N
Genome expansion in early eukaryotes drove the transition from lateral gene transfer to meiotic sex.
- DOI:10.7554/elife.58873
- 发表时间:2020-09-29
- 期刊:
- 影响因子:7.7
- 作者:Colnaghi M;Lane N;Pomiankowski A
- 通讯作者:Pomiankowski A
Supplementary methods, results, 3 figures, and 1 table from A non-coding indel polymorphism in the
来自非编码插入缺失多态性的补充方法、结果、3 个图和 1 个表
- DOI:10.6084/m9.figshare.14529670
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Jardine M
- 通讯作者:Jardine M
Assessing the role of mitonuclear interactions on mitochondrial function and organismal fitness in natural Drosophila populations
- DOI:10.1101/2023.09.25.559268
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:S. Bettinazzi;J. Liang;E. Rodriguez;M. Bonneau;R. Holt;B. Whitehead;D. Dowling;N. Lane;M. Camus
- 通讯作者:S. Bettinazzi;J. Liang;E. Rodriguez;M. Bonneau;R. Holt;B. Whitehead;D. Dowling;N. Lane;M. Camus
Mother's curse is pervasive across a large mitonuclear Drosophila panel.
- DOI:10.1002/evl3.221
- 发表时间:2021-06
- 期刊:
- 影响因子:5
- 作者:Carnegie L;Reuter M;Fowler K;Lane N;Camus MF
- 通讯作者:Camus MF
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nick Lane其他文献
A chance insight into phosgene toxicity
对光气毒性的一次偶然洞察
- DOI:
10.1016/j.freeradbiomed.2025.06.033 - 发表时间:
2025-10-01 - 期刊:
- 影响因子:8.200
- 作者:
Ekin Daplan;Enrique Rodriguez;Nick Lane;Luca Turin - 通讯作者:
Luca Turin
Nick Lane的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nick Lane', 18)}}的其他基金
Origins of Biology: How energy flow structures metabolism and heredity at the origin of life
生物学的起源:生命起源时能量流如何构建新陈代谢和遗传
- 批准号:
BB/V003542/1 - 财政年份:2021
- 资助金额:
$ 118.6万 - 项目类别:
Research Grant
相似海外基金
Development of hydrophilic carbon nanowalls for electric double layer capacitor electrodes
用于双电层电容器电极的亲水性碳纳米墙的开发
- 批准号:
23K03924 - 财政年份:2023
- 资助金额:
$ 118.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of quantum solid-sate capacitor using cellulose nanofibers and contribution to the creation of sustainable society
开发使用纤维素纳米纤维的量子固体电容器,为创建可持续发展社会做出贡献
- 批准号:
22H03775 - 财政年份:2022
- 资助金额:
$ 118.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Hybrid Pseudo-Resonant Switched-Capacitor Drive Circuits for Electrostatic Micro-mechanical Actuators
用于静电微机械致动器的混合伪谐振开关电容器驱动电路
- 批准号:
2216552 - 财政年份:2022
- 资助金额:
$ 118.6万 - 项目类别:
Standard Grant
Theory of emergent inductor and capacitor based on topological materials science
基于拓扑材料科学的新兴电感电容理论
- 批准号:
22K03538 - 财政年份:2022
- 资助金额:
$ 118.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Key Commercial scale capacitor development for Supply Chain Improvements for PEMD sector (KALEIDOSCOPE)
改善 PEMD 行业供应链的关键商业规模电容器开发 (KALEIDOSCOPE)
- 批准号:
10013674 - 财政年份:2022
- 资助金额:
$ 118.6万 - 项目类别:
Collaborative R&D
Improved Electrochemical Capacitor Performance through Modeling, Chemical Modification and Electrode Design
通过建模、化学改性和电极设计提高电化学电容器性能
- 批准号:
RGPIN-2021-02419 - 财政年份:2022
- 资助金额:
$ 118.6万 - 项目类别:
Discovery Grants Program - Individual
Development of Novel Hybrid Capacitor Using Graphite-oxide
使用氧化石墨的新型混合电容器的开发
- 批准号:
21K05255 - 财政年份:2021
- 资助金额:
$ 118.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improved Electrochemical Capacitor Performance through Modeling, Chemical Modification and Electrode Design
通过建模、化学改性和电极设计提高电化学电容器性能
- 批准号:
RGPIN-2021-02419 - 财政年份:2021
- 资助金额:
$ 118.6万 - 项目类别:
Discovery Grants Program - Individual
Implementation of variable speed wind power generation system using capacitor-less AC-AC converter and switched reluctance generator
利用无电容AC-AC变换器和开关磁阻发电机实现变速风力发电系统
- 批准号:
20K04455 - 财政年份:2020
- 资助金额:
$ 118.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Next-generation fluid-in-solid capacitor materials
下一代固体液体电容器材料
- 批准号:
FT190100058 - 财政年份:2020
- 资助金额:
$ 118.6万 - 项目类别:
ARC Future Fellowships