Regulation of stem initiation and its role in plant architecture

茎起始的调控及其在植物结构中的作用

基本信息

  • 批准号:
    BB/S005714/1
  • 负责人:
  • 金额:
    $ 64.09万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Development of a vertical shoot axis capable of bearing organs above the ground was one of the key steps in the evolution of land plants. In spite of its ancient and central role in shaping plants, formation of the stem remains one of the least understood processes in plant development. This process also has practical importance: mutations that reduce stem growth have been widely used to improve crop yield but also have undesired side effects on plant growth, for example during seed germination. A better understanding of how genes control stem growth is required to develop more precise genetic tools to increase plant productivity by modifying plant height and shape.One way to develop new tools to modify plant height is to study how genes modulate stem growth at different stages of the plant's life. This modulation is seen markedly in plants with a rosette habit, such as Arabidopsis, beet, radish, lettuce and cabbage, in which stem elongation is initially inhibited, but later activated during flowering. This transition is triggered by environmental conditions such as day length and temperature, and initiates growth of the stem in a specific region of the shoot apex, called the rib zone (RZ). Our laboratory has been studying how the RZ functions in the in the reference plant Arabidopsis. We found that a gene called ATH1 has a key role in controlling when the stem is formed: ATH1 is initially active in the RZ to prevent stem growth but is inhibited by flowering signals to initiate the stem. However, it is not known how flowering signals control ATH1 and how ATH1 inhibits stem growth. Our initial results indicate that ATH1 controls stem initiation by acting as a "gatekeeper" for two hormone signals that are known to promote stem growth: gibberellin and brassinosteroid. To test this idea, we propose to follow how ATH1 affects genes involved in signalling by these hormones. In addition, we will test whether these genes mediate the effects of ATH1 on stem growth. We also aim to understand how flowering signals connect to ATH1 to co-ordinate flower development and stem elongation. We will initially focus on regulatory sequences within the ATH1 gene, which suggest direct links to known regulators of flowering. We will introduce mutations in these sequences and look for plants in which stem growth is uncoupled from flowering. Depending on the regulatory sequences involved, we will then test whether they mediate the input of specific regulatory proteins that regulate the transition to flowering.Another motivation for studying regulatory sequences in ATH1 is that they may play a role in existing diversity in stem growth in vegetable Brassicas, and could be used to create useful, new variation in plant height and shape. Previous work showed that variation in stem height in Brassica crops is associated with differences in the genomic region containing ATH1, and that crops with a rosette habit (cabbage, kale) have specific differences in ATH1 in comparison to those with elongated stems. To test whether these differences are responsible for variation in stem growth, we will generate plants that carry ATH1 from long-or short-stemmed Brassica, but are otherwise genetically identical. If existing variation in Brassica ATH1 cannot explain differences in stem height, we will use the findings from Arabidopsis to generate novel regulatory mutations to uncouple stem growth from flowering in Brassica. Overall, this work will reveal the genetic mechanism controlling stem initiation, will shed light on how a variety of plant shapes have been selected during crop breeding, and will produce novel genetic tools to control the height and shape of plants.
直立茎轴的发育是陆地植物进化的关键步骤之一。尽管茎在植物的形成中起着古老而重要的作用,但茎的形成仍然是植物发育中最不为人所知的过程之一。这一过程也具有实际意义:减少茎生长的突变已被广泛用于提高作物产量,但也会对植物生长产生意想不到的副作用,例如在种子发芽期间。为了更好地了解基因如何控制茎的生长,需要开发更精确的遗传工具,通过改变植物的高度和形状来提高植物的生产力。开发新工具来修饰植物高度的一种方法是研究基因如何在植物生命的不同阶段调节茎的生长。这种调节在具有莲座结习性的植物中明显可见,如拟南芥、甜菜、萝卜、生菜和卷心菜,这些植物的茎伸长最初受到抑制,但后来在开花期间被激活。这种转变是由环境条件(如白天长度和温度)触发的,并在茎尖的一个特定区域开始茎的生长,称为肋区(RZ)。我们实验室一直在研究RZ在参比植物拟南芥中的作用。我们发现一种名为ATH1的基因在控制茎何时形成方面起着关键作用:ATH1最初在RZ中活跃以阻止茎生长,但被开花信号抑制以启动茎。然而,尚不清楚开花信号如何控制ATH1以及ATH1如何抑制茎的生长。我们的初步结果表明,ATH1通过充当促进茎生长的两种激素信号的“看门人”来控制茎的起始:赤霉素和油菜素类固醇。为了验证这一观点,我们建议跟踪ATH1如何影响这些激素信号传导的基因。此外,我们将测试这些基因是否介导ATH1对茎生长的影响。我们还旨在了解开花信号如何与ATH1连接,以协调花的发育和茎的伸长。我们将首先关注ATH1基因内的调控序列,这表明与已知的开花调节因子有直接联系。我们将在这些序列中引入突变,并寻找茎生长与开花不耦合的植物。根据所涉及的调控序列,我们将测试它们是否介导了调节开花过渡的特定调控蛋白的输入。研究ATH1调控序列的另一个动机是,它们可能在蔬菜芸苔属植物茎生长的现有多样性中发挥作用,并可用于创造有用的植物高度和形状的新变异。先前的研究表明,芸苔属作物茎高的变化与含有ATH1的基因组区域的差异有关,并且具有莲座结习惯的作物(卷心菜、羽衣甘蓝)与那些具有细长茎的作物相比,ATH1具有特定的差异。为了测试这些差异是否对茎生长的变化负责,我们将从长茎或短茎的芸苔中产生携带ATH1的植株,但在其他方面基因相同。如果油菜ATH1基因的现有变异不能解释茎高的差异,我们将利用拟南芥的研究结果,产生新的调控突变,使油菜茎生长与开花分离。总的来说,这项工作将揭示控制茎起始的遗传机制,将阐明在作物育种过程中如何选择各种植物形状,并将产生新的遗传工具来控制植物的高度和形状。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ARABIDOPSIS THALIANA HOMEOBOX GENE 1 controls plant architecture by locally restricting environmental responses.
A Self-Activation Loop Maintains Meristematic Cell Fate for Branching
  • DOI:
    10.1016/j.cub.2020.03.031
  • 发表时间:
    2020-05-18
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Cao, Xiuwei;Wang, Jin;Jiao, Yuling
  • 通讯作者:
    Jiao, Yuling
A Phloem-Expressed PECTATE LYASE-LIKE Gene Promotes Cambium and Xylem Development.
  • DOI:
    10.3389/fpls.2022.888201
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Bush, Max;Sethi, Vishmita;Sablowski, Robert
  • 通讯作者:
    Sablowski, Robert
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Sablowski其他文献

Growth arrest is a DNA damage protection strategy in Arabidopsis
生长停滞是拟南芥中的一种 DNA 损伤保护策略
  • DOI:
    10.1038/s41467-025-60733-1
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Antonio Serrano-Mislata;Jorge Hernández-García;Carlos de Ollas;Noel Blanco-Touriñán;Silvia Jurado-García;Cristina Úrbez;Aurelio Gómez-Cadenas;Robert Sablowski;David Alabadí;Miguel A. Blázquez
  • 通讯作者:
    Miguel A. Blázquez
Root Development: The Embryo Within?
  • DOI:
    10.1016/j.cub.2004.11.045
  • 发表时间:
    2004-12-29
  • 期刊:
  • 影响因子:
  • 作者:
    Robert Sablowski
  • 通讯作者:
    Robert Sablowski
拟南芥侧芽起始过程中分生细胞两步调控机制研究
  • DOI:
    doi:10.1371/journal.pgen.1006168
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    石碧海;张翠;田彩环;王瑨;汪泉;许腾飞;Carolyn Ohno;Robert Sablowski;Marcus G. Heisler;Klaus Theres;汪颖;焦雨铃
  • 通讯作者:
    焦雨铃
Plant cell size: Links to cell cycle, differentiation and ploidy
植物细胞大小:与细胞周期、分化和倍性的联系
  • DOI:
    10.1016/j.pbi.2024.102527
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Sara C Pinto;Boris Stojilković;Xinyu Zhang;Robert Sablowski
  • 通讯作者:
    Robert Sablowski
Walls around tumours — why plants do not develop cancer
肿瘤周围的壁——为什么植物不会患癌症
  • DOI:
    10.1038/nrc2942
  • 发表时间:
    2010-10-22
  • 期刊:
  • 影响因子:
    66.800
  • 作者:
    John H. Doonan;Robert Sablowski
  • 通讯作者:
    Robert Sablowski

Robert Sablowski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Sablowski', 18)}}的其他基金

Regulation of plant cell size coupled to DNA content
植物细胞大小与 DNA 含量的调节
  • 批准号:
    EP/X034550/1
  • 财政年份:
    2023
  • 资助金额:
    $ 64.09万
  • 项目类别:
    Research Grant
BRAZIL: Control of meristem size by DELLA proteins across plant species - Collaboration between JIC (UK) and the University of São Paulo (Brazil)
巴西:通过 DELLA 蛋白控制植物物种的分生组织大小 - JIC(英国)和圣保罗大学(巴西)之间的合作
  • 批准号:
    BB/R020302/1
  • 财政年份:
    2018
  • 资助金额:
    $ 64.09万
  • 项目类别:
    Research Grant
Genetic and developmental basis for natural variation in plant stem architecture
植物茎结构自然变异的遗传和发育基础
  • 批准号:
    BB/M003825/1
  • 财政年份:
    2015
  • 资助金额:
    $ 64.09万
  • 项目类别:
    Research Grant
Bilateral BBSRC-FAPESP: Cellular and regulatory basis for early plant organ growth
双边 BBSRC-FAPESP:早期植物器官生长的细胞和调控基础
  • 批准号:
    BB/J007056/1
  • 财政年份:
    2012
  • 资助金额:
    $ 64.09万
  • 项目类别:
    Research Grant
Cellular and regulatory basis of the early stages of stem development.
干发育早期阶段的细胞和调控基础。
  • 批准号:
    BB/I019278/1
  • 财政年份:
    2012
  • 资助金额:
    $ 64.09万
  • 项目类别:
    Research Grant
Visit to explore collaborations with Brazilian researchers in Sao Paulo state
访问圣保罗州探索与巴西研究人员的合作
  • 批准号:
    BB/J010391/1
  • 财政年份:
    2011
  • 资助金额:
    $ 64.09万
  • 项目类别:
    Research Grant
The role of the ribosome in plant development
核糖体在植物发育中的作用
  • 批准号:
    BB/G007802/1
  • 财政年份:
    2009
  • 资助金额:
    $ 64.09万
  • 项目类别:
    Research Grant
Modelling growth and gene regulation in floral organs
花器官的生长和基因调控建模
  • 批准号:
    BB/F005571/1
  • 财政年份:
    2008
  • 资助金额:
    $ 64.09万
  • 项目类别:
    Research Grant
Cis-element conservation and divergence in plant reproductive development
植物生殖发育中的顺式元素保守和分化
  • 批准号:
    BB/E024807/1
  • 财政年份:
    2007
  • 资助金额:
    $ 64.09万
  • 项目类别:
    Research Grant

相似国自然基金

过渡金属氧化物电催化CO2性能的原位4D-STEM研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
脐带间充质干细胞微囊联合低能量冲击波治疗神经损伤性ED的机制研究
  • 批准号:
    82371631
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
亚低温调控颅脑创伤急性期神经干细胞Mpc2/Lactate/H3K9lac通路促进神经修复的研究
  • 批准号:
    82371379
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
PD-L1改善通用型干细胞衍生RPE治疗AMD效果的机制研究
  • 批准号:
    82371107
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
LIPUS促进微环境巨噬细胞释放CCL2诱导尿道周围平滑肌祖细胞定植与分化的机制研究
  • 批准号:
    82370780
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
骨髓抑制再生单个核细胞移植通过调节线粒体功能在脑缺血再灌注损伤中的神经保护机制研究
  • 批准号:
    82371301
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于图谱补全与评价循证的中学STEM课程资源智能组织方法研究
  • 批准号:
    62307023
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用iDPC-STEM与冷冻电子断层成像技术相结合的方式解析生物厚样品原位高分辨三维结构
  • 批准号:
    32241024
  • 批准年份:
    2022
  • 资助金额:
    100.00 万元
  • 项目类别:
    专项项目
科学传播类:跨学科STEM科普活动实践与科技创新人才培养机制研究
  • 批准号:
    T2241013
  • 批准年份:
    2022
  • 资助金额:
    10.00 万元
  • 项目类别:
    专项项目
调控胰岛特异性stem-like CD8+ Tm细胞能量代谢免疫治疗1型糖尿病研究
  • 批准号:
    82230028
  • 批准年份:
    2022
  • 资助金额:
    261 万元
  • 项目类别:
    重点项目

相似海外基金

The regulation of cancer and aging by methionine
蛋氨酸对癌症和衰老的调节
  • 批准号:
    10750559
  • 财政年份:
    2023
  • 资助金额:
    $ 64.09万
  • 项目类别:
Regulation of diverse microglial phenotypes in neurodegeneration
神经退行性变中不同小胶质细胞表型的调节
  • 批准号:
    10901024
  • 财政年份:
    2023
  • 资助金额:
    $ 64.09万
  • 项目类别:
Regulation of Male Germ Cell Development through DND1-Mediated Translation of Epigenetic Factors
通过 DND1 介导的表观遗传因子翻译调节雄性生殖细胞发育
  • 批准号:
    10748520
  • 财政年份:
    2023
  • 资助金额:
    $ 64.09万
  • 项目类别:
Neuronal regulation of sinonasal Type 2 inflammation
鼻窦 2 型炎症的神经元调节
  • 批准号:
    10740468
  • 财政年份:
    2023
  • 资助金额:
    $ 64.09万
  • 项目类别:
Regulation of Human Tumorigensis by Cancer Specific NXF1 Adaptor Proteins
癌症特异性 NXF1 接头蛋白对人类肿瘤发生的调节
  • 批准号:
    10411472
  • 财政年份:
    2022
  • 资助金额:
    $ 64.09万
  • 项目类别:
Keratin-dependent regulation of progenitor keratinocyte identity and commitment to differentiation
角质形成细胞祖细胞身份和分化承诺的角蛋白依赖性调节
  • 批准号:
    10525612
  • 财政年份:
    2022
  • 资助金额:
    $ 64.09万
  • 项目类别:
Hormone Receptor Regulation of RNA Polymerase III
RNA 聚合酶 III 的激素受体调节
  • 批准号:
    10662332
  • 财政年份:
    2022
  • 资助金额:
    $ 64.09万
  • 项目类别:
Role of UTX condensation in chromatin regulation
UTX 缩合在染色质调控中的作用
  • 批准号:
    10541857
  • 财政年份:
    2022
  • 资助金额:
    $ 64.09万
  • 项目类别:
Regulation of Human Tumorigensis by Cancer Specific NXF1 Adaptor Proteins
癌症特异性 NXF1 接头蛋白对人类肿瘤发生的调节
  • 批准号:
    10596156
  • 财政年份:
    2022
  • 资助金额:
    $ 64.09万
  • 项目类别:
Roles and regulation of transcriptional reprogramming in squamous carcinogenesis
转录重编程在鳞状细胞癌发生中的作用和调控
  • 批准号:
    10673755
  • 财政年份:
    2022
  • 资助金额:
    $ 64.09万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了