High resolution profiling of neuronal lineages by functional characterisation and sequencing of barcoded RNA
通过条形码 RNA 的功能表征和测序对神经元谱系进行高分辨率分析
基本信息
- 批准号:BB/S007938/1
- 负责人:
- 金额:$ 72.62万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Lineage tracing is the fundamental aspect of biological research that examines how dividing cells can give rise to many different types of mature cell. This is crucial for understanding how biological tissue develops and functions. It is also crucial for understanding disease processes, because many diseases involve the abnormal production of cells or the loss of a particular cell type. Lineage tracing provides the information that explains where each of the different cell types are born, how these cells move to their final position and how they interact with one another to produce a functional piece of tissue. In the nervous system for example, scientists use lineage tracing to understand how dividing 'progenitor' cells give rise to the many different types of nerve cells found in the adult brain. We are also just beginning to understand how much influence a progenitor can have upon the nerve cells that it produces. For example, recent work has suggested that even the way that a nerve cell forms its particular connections with other nerve cells can be linked to the progenitor from which it was born.Despite its importance for understanding biological processes, scientists have had limited tools for working out which cells come from a dividing progenitor cell. The most conclusive method has involved labelling members of the same lineage with a unique tag made from a string of genetic material in which the sequence of nucleotide 'letters' are unique. This has been referred to as 'DNA barcoding', as it uses unique labels, similar to the way that barcodes are used to identify different products in the supermarket. However, a series of issues have limited the application of this method. First, recovering the DNA barcode has proved to be very inefficient. Second, DNA barcoding has been performed on fixed tissue, which has meant that it has not been possible to study important properties of the cells whilst they are alive.To address this problem we have developed a new approach that works with a different type of genetic material, called RNA. In our preliminary experiments we have designed an RNA barcoding approach that produces many copies of the same barcode in each cell and have shown that this increases the success of reading the barcode sequence to practically 100%. Furthermore, since RNA barcoding can be performed in live cells, this approach offers exciting new opportunities to combine our method with techniques for studying live nerve cells. For example, we can combine our method with techniques for recording the electrical activity and detailed three-dimensional shape of the nerve cell. Perhaps most importantly, our approach allows us to use powerful new genetic methods to measure the levels of thousands of different genes in each cell that we study. This provides a very rich way of classifying the exact type of nerve cell, as well as offering an insight into how a progenitor cell can influence very specific aspects of the cells it produces.In this project we will investigate the potential of our new approach by assessing its utility for lineage tracing mouse cortical cells and also human cortical cells derived from pluripotent stem cells. Demonstrating that our method works in such different systems will show that it is an important method and can make new contributions to multiple areas of science. We will also use our method to address important biological questions, including what genes might cause related nerve cells to be more similar to one another. Finally, we are proposing to make new versions of our barcoding tool that will further increase the range of applications and we have specific plans about how we can make our tools available to the scientific community. The work will therefore have dual impact in the sense that it will advance our biological understanding of the brain, whilst also providing new technologies for scientists in many fields, including stem cell biology and cancer biology.
谱系追踪是生物学研究的基本方面,研究分裂细胞如何产生许多不同类型的成熟细胞。这对于理解生物组织如何发育和发挥功能至关重要。它对于理解疾病过程也至关重要,因为许多疾病涉及细胞的异常产生或特定细胞类型的丢失。谱系追踪提供的信息解释了每种不同类型的细胞在哪里出生,这些细胞如何移动到它们的最终位置,以及它们如何相互作用以产生功能性组织。例如,在神经系统中,科学家使用谱系追踪来了解分裂的“祖”细胞如何产生成人大脑中发现的许多不同类型的神经细胞。我们也刚刚开始了解祖细胞对它产生的神经细胞有多大的影响。例如,最近的研究表明,即使是神经细胞与其他神经细胞形成特定连接的方式,也可能与其诞生的祖细胞有关。尽管这对理解生物过程很重要,但科学家们在确定哪些细胞来自分裂的祖细胞方面的工具有限。最具决定性的方法是用一种独特的标签标记同一谱系的成员,这种标签是由一串遗传物质制成的,其中核苷酸“字母”的序列是独特的。这被称为“DNA条形码”,因为它使用独特的标签,类似于条形码用于识别超市中不同产品的方式。然而,一系列问题限制了该方法的应用。首先,恢复DNA条形码已被证明是非常低效的。第二,DNA条形码是在固定的组织上进行的,这意味着不可能在细胞活着的时候研究细胞的重要特性。为了解决这个问题,我们开发了一种新的方法,它与一种不同类型的遗传物质一起工作,称为RNA。在我们的初步实验中,我们已经设计了一种RNA条形码化方法,该方法在每个细胞中产生相同条形码的许多拷贝,并且已经表明这将阅读条形码序列的成功率提高到几乎100%。此外,由于RNA条形码可以在活细胞中进行,这种方法提供了令人兴奋的新机会,将我们的方法与研究活神经细胞的技术联合收割机结合起来。例如,我们可以联合收割机将我们的方法与记录神经细胞电活动和详细三维形状的技术结合起来。也许最重要的是,我们的方法允许我们使用强大的新遗传方法来测量我们研究的每个细胞中数千个不同基因的水平。这提供了一个非常丰富的方法来分类神经细胞的确切类型,以及提供了一个洞察祖细胞如何影响它产生的细胞的非常具体的方面。在这个项目中,我们将调查我们的新方法的潜力,通过评估其效用谱系追踪小鼠皮层细胞,也从多能干细胞衍生的人类皮层细胞。证明我们的方法在这样不同的系统中工作将表明它是一种重要的方法,可以为多个科学领域做出新的贡献。我们还将使用我们的方法来解决重要的生物学问题,包括哪些基因可能导致相关的神经细胞彼此更加相似。最后,我们建议制作新版本的条形码工具,这将进一步增加应用范围,我们有关于如何向科学界提供我们的工具的具体计划。因此,这项工作将产生双重影响,它将促进我们对大脑的生物学理解,同时也为许多领域的科学家提供新技术,包括干细胞生物学和癌症生物学。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Active cortical networks promote shunting fast synaptic inhibition in vivo
活跃的皮质网络促进体内快速分流突触抑制
- DOI:10.1101/2023.03.01.530641
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Burman R
- 通讯作者:Burman R
Intracellular chloride regulation mediates local sleep pressure in the cortex.
- DOI:10.1038/s41593-022-01214-2
- 发表时间:2023-01
- 期刊:
- 影响因子:25
- 作者:Alfonsa H;Burman RJ;Brodersen PJN;Newey SE;Mahfooz K;Yamagata T;Panayi MC;Bannerman DM;Vyazovskiy VV;Akerman CJ
- 通讯作者:Akerman CJ
Targeted single-cell RNA sequencing of transcription factors enhances the identification of cell types and trajectories.
- DOI:10.1101/gr.273961.120
- 发表时间:2021-06
- 期刊:
- 影响因子:7
- 作者:Pokhilko A;Handel AE;Curion F;Volpato V;Whiteley ES;Bøstrand S;Newey SE;Akerman CJ;Webber C;Clark MB;Bowden R;Cader MZ
- 通讯作者:Cader MZ
Cortical integration of higher-order thalamic inputs is lineage-dependent
- DOI:10.1101/2022.03.28.486015
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Matthew J. Buchan;Kashif Mahfooz;Joram J. van Rheede;Gemma Gothard;Sophie V. Avery;T. Ellender;S. Newey;C. Akerman
- 通讯作者:Matthew J. Buchan;Kashif Mahfooz;Joram J. van Rheede;Gemma Gothard;Sophie V. Avery;T. Ellender;S. Newey;C. Akerman
Pro-maturational Effects of Human iPSC-Derived Cortical Astrocytes upon iPSC-Derived Cortical Neurons
- DOI:10.1016/j.stemcr.2020.05.003
- 发表时间:2020-07-14
- 期刊:
- 影响因子:5.9
- 作者:Hedegaard, Anne;Monzon-Sandoval, Jimena;Akerman, Colin J.
- 通讯作者:Akerman, Colin J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Colin Akerman其他文献
Colin Akerman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Colin Akerman', 18)}}的其他基金
In vivo analysis of the proliferative properties and morphological dynamics of radial glial cells in the Xenopus brain
爪蟾脑中放射状胶质细胞的增殖特性和形态动力学的体内分析
- 批准号:
BB/E015476/1 - 财政年份:2007
- 资助金额:
$ 72.62万 - 项目类别:
Research Grant
Chloride regulation in neuronal development and epilepsy
神经元发育和癫痫中的氯调节
- 批准号:
G0601503/1 - 财政年份:2007
- 资助金额:
$ 72.62万 - 项目类别:
Research Grant
相似国自然基金
柴胡类生药鉴定与质量评价的二元条形码系统的研究
- 批准号:30873387
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Atlas for neuronal and glial cell types selectively vulnerable to proteinopathies during progression of Alzheimer's Disease
在阿尔茨海默病进展过程中选择性易受蛋白质病影响的神经元和神经胶质细胞类型图谱
- 批准号:
10667245 - 财政年份:2023
- 资助金额:
$ 72.62万 - 项目类别:
Project #1 Single-soma RNA-seq and spatial transcriptomics of human TGs
项目
- 批准号:
10806547 - 财政年份:2023
- 资助金额:
$ 72.62万 - 项目类别:
Gene regulatory network control of olfactory cortex cell type specification
嗅觉皮层细胞类型规范的基因调控网络控制
- 批准号:
10656692 - 财政年份:2023
- 资助金额:
$ 72.62万 - 项目类别:
Multi-modal profiling of spatially resolved cell types mediating opioid withdrawal
介导阿片类药物戒断的空间分辨细胞类型的多模式分析
- 批准号:
10787010 - 财政年份:2023
- 资助金额:
$ 72.62万 - 项目类别:
Highly multiplexed circuit mapping using barcoded rabies viruses and in situ sequencing.
使用条形码狂犬病病毒和原位测序进行高度多重电路图谱。
- 批准号:
10640501 - 财政年份:2023
- 资助金额:
$ 72.62万 - 项目类别:
Single-cell transcriptomic and epigenomic analysis of brain cell vulnerabilities to tauopathies in early AD impacted brain regions
早期 AD 影响大脑区域脑细胞对 tau 蛋白病变脆弱性的单细胞转录组和表观基因组分析
- 批准号:
10667016 - 财政年份:2023
- 资助金额:
$ 72.62万 - 项目类别:
Mapping brain-wide opioid actions by profiling neuronal activities and in vivo cellular target engagement
通过分析神经元活动和体内细胞靶标参与来绘制全脑阿片类药物作用
- 批准号:
10775623 - 财政年份:2023
- 资助金额:
$ 72.62万 - 项目类别:
Investigating the Critical Role of Glia In Peripheral Organ Development and Physiology
研究神经胶质细胞在周围器官发育和生理学中的关键作用
- 批准号:
10676501 - 财政年份:2023
- 资助金额:
$ 72.62万 - 项目类别:
Low-input profiling of brain-region and cell-type specific epigenomic dynamics to understand gene-environment interactions in opioid addiction
对大脑区域和细胞类型特异性表观基因组动力学进行低输入分析,以了解阿片类药物成瘾中的基因与环境的相互作用
- 批准号:
10605801 - 财政年份:2023
- 资助金额:
$ 72.62万 - 项目类别:














{{item.name}}会员




