Characterisation and exploitation of a promiscuous non-ribosomal peptide cyclase

混杂非核糖体肽环化酶的表征和开发

基本信息

  • 批准号:
    BB/T008075/1
  • 负责人:
  • 金额:
    $ 59.99万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

The majority of clinically used antibiotics are derived from natural products produced by Streptomyces species and other closely related soil bacteria. These drugs were primarily discovered and introduced into the clinic during a 'golden era' of antibiotic discovery that spanned 1940-1960. The utility of these agents has been eroded over the last half-century due to misuse. As a consequence, there is now an urgent need to discover new antibiotics to treat drug resistant bacterial infections. Growing concerns about resistance to antibacterial agents combined with the failure to find new leads from the screening of large libraries of synthetic compounds has led to a renewed interest in natural products discovery. Unfortunately, the overwhelming majority of microbes have yet to be cultured, and for those that have, only a small fraction of their natural products are produced in the laboratory. Conventional approaches to overcome this problem, typically rely upon time consuming genetic modification of the producing organism or the use of poorly understood 'elicitor' compounds to switch on production. The bottleneck with this approach is the fact that a large amount time can be spent on one biosynthetic pathway whose product could never be produced or is not an antibiotic. Moreover, even if success in activating an antibiotic pathway is achieved, discovery of a lead compound is only the first stage of drug discovery. Many antibiotics are derived from a class of microbial natural products called non-ribosomal peptides. Once an exciting prospect is identified, future development is ultimately dictated by its accessibility. Microbial fermentation rarely provides sufficient compound to move forward and therefore chemical synthesis is typically used to produce the quantity, and importantly, the chemical diversity of analogues necessary for testing the clinical potential of a discovery lead. The problem here is that the vast majority of non-ribosomal peptides are cyclic and cyclisation reactions are typically very problematic and produce a low yield of the final compound. In nature, the cyclisation reaction is carried out by a part of the biosynthetic pathway called a thioesterase domain. We recently identified a novel cyclase enzyme, which is promiscuous with respect to the peptide substrates it cyclises. This is exciting and we want to understand how this enzyme works so we can harness its potential for biotechnology. For example, to improve chemical synthesis of antibiotics. We believe this could ultimately help more medicines reach the clinic, possibly making them less expensive and more widely available.
大多数临床使用的抗生素来自链霉菌属和其他密切相关的土壤细菌产生的天然产物。这些药物最初是在1940-1960年抗生素发现的“黄金时代”被发现并引入临床的。在过去的半个世纪里,由于滥用,这些药剂的效用已经受到侵蚀。因此,现在迫切需要发现新的抗生素来治疗耐药性细菌感染。对抗菌剂耐药性的日益关注,加上未能从筛选合成化合物的大型库中找到新的线索,导致人们对天然产物发现重新产生兴趣。不幸的是,绝大多数的微生物还没有被培养出来,而对于那些已经被培养出来的微生物来说,只有一小部分的天然产物是在实验室中产生的。克服这一问题的常规方法通常依赖于对生产生物体进行耗时的遗传修饰或使用知之甚少的“激发子”化合物来启动生产。这种方法的瓶颈是,大量的时间可能花费在一个生物合成途径上,其产物可能永远不会产生或不是抗生素。此外,即使成功地激活了抗生素途径,发现先导化合物也只是药物发现的第一阶段。许多抗生素是从一类微生物的天然产物称为非核糖体肽。一旦确定了一个令人兴奋的前景,未来的发展最终取决于其可访问性。微生物发酵很少提供足够的化合物来向前推进,因此化学合成通常用于生产测试发现线索的临床潜力所需的数量,重要的是,化学多样性。这里的问题是,绝大多数非核糖体肽是环状的,并且环化反应通常非常成问题,并且产生低收率的最终化合物。在自然界中,环化反应是通过生物合成途径的一部分进行的,称为硫酯酶结构域。我们最近发现了一种新的环化酶,这是混杂的肽底物,它环化。这是令人兴奋的,我们想了解这种酶是如何工作的,这样我们就可以利用它的生物技术潜力。例如,改进抗生素的化学合成。我们相信,这最终可以帮助更多的药物进入诊所,可能使它们更便宜,更广泛地获得。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Standalone ß-Ketoreductase Acts Concomitantly with Biosynthesis of the Antimycin Scaffold.
独立的酮还原酶与抗霉素支架的生物合成同时起作用。
  • DOI:
    10.1021/acschembio.1c00229
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Fazal A
  • 通讯作者:
    Fazal A
Antibiotics made to order.
抗生素按订单生产。
  • DOI:
    10.1126/science.abq3206
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seipke RF
  • 通讯作者:
    Seipke RF
Cryptic or Silent? The Known Unknowns, Unknown Knowns, and Unknown Unknowns of Secondary Metabolism.
  • DOI:
    10.1128/mbio.02642-20
  • 发表时间:
    2020-10-20
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Hoskisson PA;Seipke RF
  • 通讯作者:
    Seipke RF
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan Seipke其他文献

Ryan Seipke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryan Seipke', 18)}}的其他基金

Genome-scale functional genomics in Streptomyces species using CRISPR interference
使用 CRISPR 干扰进行链霉菌属物种的基因组规模功能基因组学
  • 批准号:
    BB/T014962/1
  • 财政年份:
    2021
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Research Grant
Elucidating novel regulatory mechanisms of antimycin-type depsipeptide biosynthesis
阐明抗霉素型缩酚肽生物合成的新调控机制
  • 批准号:
    BB/N007980/1
  • 财政年份:
    2016
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Research Grant

相似海外基金

Exploitation of High Voltage CMOS sensors for tracking applications in physics experiments and beyond
利用高压 CMOS 传感器跟踪物理实验及其他领域的应用
  • 批准号:
    MR/X023834/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Fellowship
A powerful directed-evolution tool for exploitation of chloroplast engineering biology
用于叶绿体工程生物学开发的强大定向进化工具
  • 批准号:
    BB/Y008162/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Research Grant
Refresh, Continuation, and Science Exploitation of the Birmingham Solar-Oscillations Network (BiSON)
伯明翰太阳振荡网络(BiSON)的更新、延续和科学开发
  • 批准号:
    ST/Z000025/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Research Grant
Exploitation des ressources naturelles et santé mondiale : les coûts cachés et les impacts sur les communautés locales
自然和世界资源的开发:缓存和对公共场所的影响
  • 批准号:
    485676
  • 财政年份:
    2023
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Miscellaneous Programs
Scaled Production of Aerogel-based materials for Commercial Exploitation (SPACE)
用于商业开发的气凝胶基材料的规模生产(SPACE)
  • 批准号:
    10036764
  • 财政年份:
    2023
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Collaborative R&D
Commercial exploitation of novel biofertilisers for increased soil health
新型生物肥料的商业开发以改善土壤健康
  • 批准号:
    10054609
  • 财政年份:
    2023
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Grant for R&D
Analysis of the mechanism of protein secretion through the Sec machinery and exploitation as a polypeptide sequencing device
通过 Sec 机制分析蛋白质分泌机制并开发为多肽测序装置
  • 批准号:
    2885488
  • 财政年份:
    2023
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Studentship
Improving Quality of Care for Persons with Dementia in Nursing Homes – Evaluation of the National Background Check Program
提高疗养院痴呆症患者的护理质量 — 对国家背景调查计划的评估
  • 批准号:
    10662838
  • 财政年份:
    2023
  • 资助金额:
    $ 59.99万
  • 项目类别:
Factors of expanding distribution during the Satsumon Culture based on exploitation dynamics
基于开发动态的萨苏门文化时期扩大分布的因素
  • 批准号:
    23H00689
  • 财政年份:
    2023
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
An Open Innovation Ecosystem for exploitation of materials for building envelopes towards zero energy buildings (Exploit4InnoMat)
用于开发建筑围护结构材料以实现零能耗建筑的开放式创新生态系统 (Exploit4InnoMat)
  • 批准号:
    10048971
  • 财政年份:
    2023
  • 资助金额:
    $ 59.99万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了