A powerful directed-evolution tool for exploitation of chloroplast engineering biology

用于叶绿体工程生物学开发的强大定向进化工具

基本信息

  • 批准号:
    BB/Y008162/1
  • 负责人:
  • 金额:
    $ 136.3万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Photosynthetic organisms including plants and green algae offer significant potential for sustainable biotechnology in which sunlight is used to power the biosynthesis of industrial products using simple inputs of carbon dioxide, inorganic salts and water. Overlay on this the ability to genetically engineer the plant or algae using modern synthetic biology techniques, and these organisms offer the potential for making a myriad of novel bio-products for a wide range of commercial sectors including pharmaceuticals, nutraceuticals, cosmetics, textiles and food ingredients. Such applied synthetic biology is termed 'engineering biology', and requires reprogramming the cells of the organism with a suite of new genes to make bio-products. An attractive site for housing these genes within the cell is the chloroplast. This sub-cellular compartment contains a minimal chromosome (the 'plastome') harbouring only a hundred-or-so genes, and a simple expression system to decode these genes into enzymes and proteins. Re-design of the plastome using engineering design principles (i.e. standardisation, abstraction and predictable output for a given input) to house new genes is therefore relatively straightforward, and this technology has been developed for several plants and for the single cell alga, Chlamydomonas reinhardtii. However, an initial design is never optimal since numerous parameters need to be tuned to achieve the desired expression of the genes and the optimum design of the proteins encoded by those genes. Such optimisation can involve either multiple iterations where the knowledge gained from the first design informs changes incorporated in the next version of the design, and so-on. Such an approach can be lengthy and costly. Alternatively, millions of different design variants can be tested in parallel, but this requires the generation of millions of test organisms which can be impractical. In this project, we will build on the synthetic biology technology we have developed for the C. reinhardtii chloroplast and create a new and powerful optimisation tool. We will develop a system that allows us to introduce multiple random base changes (i.e. mutations) within the plastome in a controlled manner, and in a focused way so that we don't introduce unwanted mutations into the much larger nuclear genome. Our approach will involve creating a starting strain containing a highly error-prone version of the chloroplast DNA polymerase, which is the enzyme that replicated chloroplast genes. The activity of this polymerase will be tightly regulated, but when induced using a simple vitamin-regulated switch the design landscape of any gene(s) engineered into the plastome can be explored by simply growing the cells to produce millions of daughter cells, each carrying different DNA changes within the plastome. Selection or high-throughput screening of these cells would allow the rapid identification of those variants showing improvements in a desired outcome (higher level of product, more active or stable enzyme, etc.). As a first demonstration of the power of this approach, we will search for more efficient variants of key enzymes within the Calvin-Benson-Bassham cycle. This cyclical biochemical pathway is fundamental to the conversion of CO2 to organic carbon by photosynthesis, and it is known that improvements in the activity of several key enzymes (most notably the enzyme 'Rubisco') would markedly improve the growth of plants and algae. We will use our plastome mutator technology to search in vivo for such improved enzyme variants. This would not only provide new insights into how to improve photosynthetic performance in crop plants, but also produce faster growing C. reinhardtii strains for applications in green industrial biotechnology.
包括植物和绿藻在内的光合作用生物为可持续生物技术提供了巨大的潜力,在可持续生物技术中,阳光被用来通过简单的二氧化碳、无机盐和水的输入来推动工业产品的生物合成。在此基础上,利用现代合成生物学技术对植物或藻类进行基因工程改造,这些生物为包括制药、保健食品、化妆品、纺织品和食品配料在内的广泛商业部门提供了制造无数新型生物产品的潜力。这种应用合成生物学被称为工程生物学,需要用一套新的基因对生物体的细胞进行重新编程,以制造生物产品。在细胞内容纳这些基因的一个有吸引力的位置是叶绿体。这个亚细胞隔间包含一个最小的染色体(‘质体’),其中只含有100个左右的基因,以及一个简单的表达系统,可以将这些基因解码为酶和蛋白质。因此,使用工程设计原则(即标准化、抽象化和特定输入的可预测输出)重新设计质体组以容纳新基因相对简单,这项技术已被开发用于几种植物和单细胞藻类--莱茵衣藻。然而,最初的设计从来都不是最优的,因为需要调整许多参数来实现所需的基因表达和这些基因编码的蛋白质的最佳设计。这样的优化可以包括多次迭代,其中从第一个设计获得的知识通知合并到下一个设计版本中的更改,以此类推。这样的方法可能会耗时很长,成本也很高。或者,可以并行测试数百万个不同的设计变体,但这需要生成数百万个测试有机体,这可能是不切实际的。在这个项目中,我们将建立在我们为C.reinhardtii叶绿体开发的合成生物技术的基础上,并创建一个新的、强大的优化工具。我们将开发一种系统,允许我们以可控的方式和集中的方式在质体体中引入多个随机碱基变化(即突变),这样我们就不会在更大的核基因组中引入不想要的突变。我们的方法将包括创建一个包含高度容易出错的叶绿体DNA聚合酶版本的起始菌株,叶绿体DNA聚合酶是复制叶绿体基因的酶。这种聚合酶的活性将受到严格的调控,但当使用简单的维生素调控开关诱导时,通过简单地培养细胞来产生数以百万计的子细胞,就可以探索任何基因(S)在质体中的设计图景,每个子细胞在质体中携带不同的dna变化。这些细胞的选择或高通量筛选将允许快速鉴定那些在预期结果(更高水平的产物、更活跃或更稳定的酶等)中表现出改善的变异。作为这种方法的力量的第一个演示,我们将在Calvin-Benson-Bassham循环中寻找更有效的关键酶变体。这种循环的生化途径是通过光合作用将二氧化碳转化为有机碳的基本途径,众所周知,几种关键酶(最明显的是‘Rubisco’酶)活性的提高将显著促进植物和藻类的生长。我们将使用我们的质构体变异体技术在体内寻找这种改进的酶变体。这不仅将为如何提高作物的光合作用性能提供新的见解,而且还将生产出生长更快的莱茵哈蒂菌菌株,用于绿色工业生物技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Saul Purton其他文献

Cyanobacteria and microalgae in supporting human habitation on Mars
蓝细菌和微藻对火星上人类居住的支持
  • DOI:
    10.1016/j.biotechadv.2022.107946
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
    12.500
  • 作者:
    Lydia J. Mapstone;Mara N. Leite;Saul Purton;Ian A. Crawford;Lewis Dartnell
  • 通讯作者:
    Lewis Dartnell
The commercial potential of Aphanizomenon flos-aquae, a nitrogen-fixing edible cyanobacterium
  • DOI:
    10.1007/s10811-024-03214-0
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Gabriel D. Scoglio;Harry O. Jackson;Saul Purton
  • 通讯作者:
    Saul Purton
Am improved procedure for the isolation of chloroplast DNA fromChlamydomonas reinhardtii
  • DOI:
    10.1007/bf02669846
  • 发表时间:
    1993-09-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Helen E. O'connor;David R. Stevens;Stuart V. Ruffle;Jonathan H. A. Nugent;Saul Purton
  • 通讯作者:
    Saul Purton
Bio‐Sprayed/Threaded Microalgae Remain Viable and Indistinguishable from Controls
生物喷雾/线状微藻仍然具有活力并且与对照组没有区别
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    13.3
  • 作者:
    Jing Cui;Ayad Eddaoudi;Saul Purton;S. Jayasinghe
  • 通讯作者:
    S. Jayasinghe
Exploring the Growing Role of Cyanobacteria in Industrial Biotechnology and Sustainability
探索蓝藻在工业生物技术和可持续发展中日益增长的作用
  • DOI:
    10.3389/978-2-88971-317-2
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Lea;Tina C. Summerfield;Daniel C. Ducat;Xuefeng Lu;Alistair J McCormick;Saul Purton
  • 通讯作者:
    Saul Purton

Saul Purton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Saul Purton', 18)}}的其他基金

A Thailand-UK workshop exploring algal-based therapeutics for aquaculture and farmed animals
泰国-英国研讨会探索基于藻类的水产养殖和养殖动物疗法
  • 批准号:
    BB/X018474/1
  • 财政年份:
    2023
  • 资助金额:
    $ 136.3万
  • 项目类别:
    Research Grant
Rewriting The Genetic Code: The Algal Plastome As A Testbed For Basic And Applied Studies
重写遗传密码:藻类质体作为基础和应用研究的试验台
  • 批准号:
    BB/W003538/1
  • 财政年份:
    2022
  • 资助金额:
    $ 136.3万
  • 项目类别:
    Research Grant
UK-China Workshop in Algal Biotechnology
中英藻类生物技术研讨会
  • 批准号:
    BB/T020040/1
  • 财政年份:
    2020
  • 资助金额:
    $ 136.3万
  • 项目类别:
    Research Grant
Algae-UK: exploiting the algal treasure trove
Algae-UK:开发藻类宝库
  • 批准号:
    BB/S009825/1
  • 财政年份:
    2019
  • 资助金额:
    $ 136.3万
  • 项目类别:
    Research Grant
(Re)design of the chloroplast genome - towards a synthetic organelle.
叶绿体基因组的(重新)设计 - 朝向合成细胞器。
  • 批准号:
    BB/R016534/1
  • 财政年份:
    2018
  • 资助金额:
    $ 136.3万
  • 项目类别:
    Research Grant
Algal Biotechnology Workshop in Wuhan, China
中国武汉藻类生物技术研讨会
  • 批准号:
    BB/R021481/1
  • 财政年份:
    2018
  • 资助金额:
    $ 136.3万
  • 项目类别:
    Research Grant
A UK-New Zealand Partnership: exploiting algae and marine biomass for IBBE
英国-新西兰合作伙伴关系:利用藻类和海洋生物质促进 IBBE
  • 批准号:
    BB/P02596X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 136.3万
  • 项目类别:
    Research Grant
PHYCONET: unlocking the IB potential of microalgae
PHYCONET:释放微藻的 IB 潜力
  • 批准号:
    BB/L013789/1
  • 财政年份:
    2014
  • 资助金额:
    $ 136.3万
  • 项目类别:
    Research Grant
Algal oils by design: a new biotech platform for high-value lipids.
设计藻油:高价值脂质的新生物技术平台。
  • 批准号:
    BB/L002957/1
  • 财政年份:
    2014
  • 资助金额:
    $ 136.3万
  • 项目类别:
    Research Grant
Production of isoprenoid-based biofuel in algae using a synthetic biology approach
使用合成生物学方法在藻类中生产类异戊二烯生物燃料
  • 批准号:
    BB/I007660/1
  • 财政年份:
    2011
  • 资助金额:
    $ 136.3万
  • 项目类别:
    Research Grant

相似国自然基金

晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
  • 批准号:
    21171046
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
TAP26磷酸化调控SP-B基因表达的研究
  • 批准号:
    81070059
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
hCLP46启动子"CpG island"甲基化模式及其对骨髓CD34+细胞分化的作用
  • 批准号:
    30771193
  • 批准年份:
    2007
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

Directed and adaptive evolution of photosynthetic systems
光合系统的定向和适应性进化
  • 批准号:
    MR/Y011635/1
  • 财政年份:
    2024
  • 资助金额:
    $ 136.3万
  • 项目类别:
    Fellowship
High-throughput single-molecule directed evolution
高通量单分子定向进化
  • 批准号:
    DP240101399
  • 财政年份:
    2024
  • 资助金额:
    $ 136.3万
  • 项目类别:
    Discovery Projects
Directed Co-evolution of Next Generation Biohybrids for Energy Conversion
用于能量转换的下一代生物混合体的定向协同进化
  • 批准号:
    EP/Z000440/1
  • 财政年份:
    2024
  • 资助金额:
    $ 136.3万
  • 项目类别:
    Research Grant
A framework for machine learning assisted directed evolution of plastic-degrading enzymes
机器学习辅助塑料降解酶定向进化的框架
  • 批准号:
    10059716
  • 财政年份:
    2023
  • 资助金额:
    $ 136.3万
  • 项目类别:
    Launchpad
Discovery-Driven Mathematics and Artificial Intelligence for Biosciences and Drug Discovery
用于生物科学和药物发现的发现驱动数学和人工智能
  • 批准号:
    10551576
  • 财政年份:
    2023
  • 资助金额:
    $ 136.3万
  • 项目类别:
Selective targeting of matrix metalloproteinases for developing preterm labor therapeutics
选择性靶向基质金属蛋白酶用于开发早产疗法
  • 批准号:
    10509786
  • 财政年份:
    2023
  • 资助金额:
    $ 136.3万
  • 项目类别:
SBIR Phase I: Directed evolution of site-specific bacterial transposase genes to alter specificity and efficiency of insertion of large DNA segments into restorable gene fusions
SBIR 第一阶段:位点特异性细菌转座酶基因的定向进化,以改变大 DNA 片段插入可恢复基因融合的特异性和效率
  • 批准号:
    2234291
  • 财政年份:
    2023
  • 资助金额:
    $ 136.3万
  • 项目类别:
    Standard Grant
Decoding the functional pleiotropy of IL-20Rβ ligands in inflammation and tumorigenesis
解码 IL-20Rβ 配体在炎症和肿瘤发生中的功能多效性
  • 批准号:
    10350447
  • 财政年份:
    2023
  • 资助金额:
    $ 136.3万
  • 项目类别:
Engineered RNA Modification Recognition
工程化 RNA 修饰识别
  • 批准号:
    10697237
  • 财政年份:
    2023
  • 资助金额:
    $ 136.3万
  • 项目类别:
Natural products inhibitors targeting homology-directed DNA repair for cancer therapy
针对癌症治疗的同源定向 DNA 修复的天然产物抑制剂
  • 批准号:
    10651048
  • 财政年份:
    2023
  • 资助金额:
    $ 136.3万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了