Bacterial motility and chemotaxis as drivers of antimicrobial resistance in biofilms

细菌运动和趋化性是生物膜中抗菌素耐药性的驱动因素

基本信息

  • 批准号:
    BB/T009098/1
  • 负责人:
  • 金额:
    $ 38.85万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

The evolution and spread of antimicrobial resistance (AMR) is now considered one of the major threats to global health, food security, and socio-economic development, being predicted to cause 10 million human deaths annually, and a cumulative cost of $100 trillion by 2050. It is thus not surprising that AMR became a major research topic, and a key strategic priority for research funding such as BBSRC funding.An important question in AMR research is understanding how AMR emerges in first place, and a wealth of literature has contributed to this topic. From these studies we now know for example that sublethal concentrations of antibiotics and other antimicrobials facilitate the evolution of antimicrobial resistance, but we still know very little about what exactly drives this effect. Importantly, the vast majority of antibiotic research focuses on homogenous cultures, often in shaking flasks, which is in sharp contrast to what bacteria experience in natural settings. Bacteria often live attached to surface in communities called biofilms, which are particularly resilient to antimicrobial stress. In biofilms, bacteria experience steep and stable gradients of nutrients and toxic compounds such as antibiotics, but we know surprisingly little about how they respond to such gradients. In particular we do not know how biofilm bacteria respond to antibiotic gradients and how this respond affects the emergence of antibiotic resistance. My research here will address this important but poorly explored topic. More specifically, I will clarify how biofilm cells control their motility in gradients of antibiotics, and how this behaviour affects the evolution of antibiotic resistance.While we have detailed understanding of how free-floating bacteria swim and bias their motion, our understanding of motility control in biofilm cells is very limited. Until recently we did not even know if surface-attached bacteria could track chemical gradients (chemotaxis). I addressed this problem by developing novel assays based on microfluidic gradients and massively-parallel automated tracking to study the chemotactic behaviour of the human pathogen Pseudomonas aeruginosa, and found that individual biofilm bacteria can effectively track chemical gradients. In particular, I have showed that biofilm bacteria control grappling-like hooks called type IV pili to climb gradients of nutrients and other canonical chemoattractants. Rather than being sluggish as often pictured, biofilm cells position themselves within the community with submicron precision. How does this novel biofilm behaviour contribute to their intrinsic resistance to antimicrobial stress? To answer this question, I have recently been using the same assays to understand how biofilm cells control their motility in stable and well-defined gradients of antibiotics and found that biofilm bacteria indeed biased their motion in such gradients. Unexpectedly, individual cells actively move towards increasing concentrations of antibiotics, reaching extremely high concentrations that would readily kill them in homogenous conditions, and further studies showed that this remarkable ability relies on phenotypic resistance. What is the genetic basis of this behaviour? And why did it evolve? Importantly, does motility control contribute the emergence of genetic resistance to antibiotics? These are the questions I will address in this research project.I will conduct a genetic screen to clarify which bacterial genes are critical for biased motility towards antibiotics in microfluidic gradients. Moreover, I will clarify how biofilm cells control their motility as a response to antibiotic-producing species growing in the neighbourhood, which will help us to understand how the behaviour evolved in natural settings. Additionally, I will combine microbial genomics and mathematical modelling to precisely quantify how motility control in bacteria contributes to the evolution of antibiotic resistance.
抗生素耐药性(AMR)的演变和传播现在被认为是对全球健康,粮食安全和社会经济发展的主要威胁之一,预计每年将导致1000万人死亡,到2050年累计成本将达到100万亿美元。因此,抗菌素耐药性成为一个重要的研究课题,并成为BBSRC等研究基金的一个关键战略重点也就不足为奇了。抗菌素耐药性研究中的一个重要问题是首先要了解抗菌素耐药性是如何出现的,大量的文献对这一主题做出了贡献。从这些研究中,我们现在知道,例如,亚致死浓度的抗生素和其他抗菌剂促进了抗菌素耐药性的演变,但我们仍然对究竟是什么驱动了这种效应知之甚少。重要的是,绝大多数抗生素研究都集中在均匀的培养物上,通常在摇瓶中,这与细菌在自然环境中的经历形成鲜明对比。细菌通常以称为生物膜的群落附着在表面上,生物膜对抗菌剂压力特别有弹性。在生物膜中,细菌经历了陡峭而稳定的营养物质和有毒化合物(如抗生素)梯度,但我们对它们如何应对这种梯度知之甚少。特别是,我们不知道生物膜细菌如何对抗生素梯度做出反应,以及这种反应如何影响抗生素耐药性的出现。我在这里的研究将解决这个重要但探索不足的话题。更具体地说,我将阐明生物膜细胞如何控制它们在抗生素梯度中的运动,以及这种行为如何影响抗生素耐药性的演变。虽然我们已经详细了解了自由漂浮的细菌如何游动并使它们的运动偏向,但我们对生物膜细胞中运动控制的理解非常有限。直到最近,我们甚至不知道表面附着的细菌是否可以跟踪化学梯度(趋化性)。我通过开发基于微流体梯度和并行自动跟踪的新型测定来研究人类病原体铜绿假单胞菌的趋化行为,并发现单个生物膜细菌可以有效地跟踪化学梯度,从而解决了这个问题。特别是,我已经证明了生物膜细菌控制被称为IV型皮利的抓钩状钩子,以爬上营养物和其他典型化学引诱物的梯度。生物膜细胞并不像通常想象的那样缓慢,而是以亚微米的精度在群落中定位。这种新的生物膜行为如何有助于它们对抗菌素应激的内在抗性?为了回答这个问题,我最近一直在使用相同的检测方法来了解生物膜细胞如何在稳定和明确的抗生素梯度中控制它们的运动,并发现生物膜细菌确实使它们的运动偏向于这种梯度。出乎意料的是,单个细胞积极地朝着增加抗生素浓度的方向移动,达到极高的浓度,在同质条件下很容易杀死它们,进一步的研究表明,这种非凡的能力依赖于表型抗性。这种行为的遗传基础是什么?它为什么会进化?重要的是,运动控制是否有助于抗生素遗传耐药性的出现?这些是我将在这个研究项目中解决的问题。我将进行基因筛选,以澄清哪些细菌基因对微流体梯度中抗生素的偏向运动至关重要。此外,我将阐明生物膜细胞如何控制它们的运动性,作为对附近生长的产寄生虫物种的反应,这将有助于我们了解这种行为在自然环境中是如何进化的。此外,我将结合联合收割机微生物基因组学和数学建模,以精确量化细菌中的运动控制如何有助于抗生素耐药性的进化。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The evolution of strategy in bacterial warfare via the regulation of bacteriocins and antibiotics.
  • DOI:
    10.7554/elife.69756
  • 发表时间:
    2021-09-07
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Niehus R;Oliveira NM;Li A;Fletcher AG;Foster KR
  • 通讯作者:
    Foster KR
The evolution of strategy in bacterial warfare via the regulation of bacteriocins and antibiotics
通过细菌素和抗生素的调节细菌战策略的演变
  • DOI:
    10.17863/cam.75204
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Niehus R
  • 通讯作者:
    Niehus R
Stabilization of Microbial Communities by Responsive Phenotypic Switching
  • DOI:
    10.1101/2021.12.12.472272
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. A. Haas;M. A. Gutierrez;N. Oliveira;R. Goldstein
  • 通讯作者:
    P. A. Haas;M. A. Gutierrez;N. Oliveira;R. Goldstein
Suicidal chemotaxis in bacteria.
  • DOI:
    10.1038/s41467-022-35311-4
  • 发表时间:
    2022-12-09
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Oliveira, Nuno M.;Wheeler, James H. R.;Deroy, Cyril;Booth, Sean C.;Walsh, Edmond J.;Durham, William M.;Foster, Kevin R.
  • 通讯作者:
    Foster, Kevin R.
Biofilm Growth Under Elastic Confinement
弹性约束下生物膜的生长
  • DOI:
    10.17863/cam.83421
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Goldstein R
  • 通讯作者:
    Goldstein R
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nuno Miguel Oliveira其他文献

Nuno Miguel Oliveira的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

蛋白质激酶MAPK7参与纤毛组装的功能和分子机理
  • 批准号:
    31972888
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
DKK1调控Wnt3a诱导间充质干细胞的迁移及机制
  • 批准号:
    31970705
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
肌球蛋白18B通过影响微丝应力纤维组装调控肿瘤细胞迁移的机制研究
  • 批准号:
    31970660
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
皮层蛋白羧基端功能的酪氨酸磷酸化调节机制及其在肿瘤细胞运动中的作用研究
  • 批准号:
    30771126
  • 批准年份:
    2007
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

Finding the way: Sensory adaptation during bacterial mechanotransduction
寻找方法:细菌机械传导过程中的感觉适应
  • 批准号:
    10744926
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
Interrogating laboratory-adapted strains of Bacillus subtilis to elucidate the selective pressures of laboratory conditions on multicellular bacterial behaviors
研究实验室适应的枯草芽孢杆菌菌株,以阐明实验室条件对多细胞细菌行为的选择压力
  • 批准号:
    10577916
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
Coordination of mucosal immune response to enteric bacterial pathogens by nociceptive innervation
通过伤害性神经支配协调对肠道细菌病原体的粘膜免疫反应
  • 批准号:
    10591535
  • 财政年份:
    2020
  • 资助金额:
    $ 38.85万
  • 项目类别:
Understanding the molecular mechanisms and biological functions of a novel bleach-sensing bacterial receptor in shaping host-associated bacterial populations in response to host inflammation
了解新型漂白剂感应细菌受体在塑造宿主相关细菌群体以响应宿主炎症方面的分子机制和生物学功能
  • 批准号:
    10217956
  • 财政年份:
    2020
  • 资助金额:
    $ 38.85万
  • 项目类别:
Coordination of mucosal immune response to enteric bacterial pathogens by nociceptive innervation
通过伤害性神经支配协调对肠道细菌病原体的粘膜免疫反应
  • 批准号:
    10132233
  • 财政年份:
    2020
  • 资助金额:
    $ 38.85万
  • 项目类别:
Understanding the molecular mechanisms and biological functions of a novel bleach-sensing bacterial receptor in shaping host-associated bacterial populations in response to host inflammation
了解新型漂白剂感应细菌受体在塑造宿主相关细菌群体以响应宿主炎症方面的分子机制和生物学功能
  • 批准号:
    10708196
  • 财政年份:
    2020
  • 资助金额:
    $ 38.85万
  • 项目类别:
Coordination of mucosal immune response to enteric bacterial pathogens by nociceptive innervation
通过伤害性神经支配协调对肠道细菌病原体的粘膜免疫反应
  • 批准号:
    10811426
  • 财政年份:
    2020
  • 资助金额:
    $ 38.85万
  • 项目类别:
Coordination of mucosal immune response to enteric bacterial pathogens by nociceptive innervation
通过伤害性神经支配协调对肠道细菌病原体的粘膜免疫反应
  • 批准号:
    10371049
  • 财政年份:
    2020
  • 资助金额:
    $ 38.85万
  • 项目类别:
Understanding the molecular mechanisms and biological functions of a novel bleach-sensing bacterial receptor in shaping host-associated bacterial populations in response to host inflammation
了解新型漂白剂感应细菌受体在塑造宿主相关细菌群体以响应宿主炎症方面的分子机制和生物学功能
  • 批准号:
    10654973
  • 财政年份:
    2020
  • 资助金额:
    $ 38.85万
  • 项目类别:
Understanding the role of sensory adaptation in bacterial mechanochemical signaling pathways
了解感觉适应在细菌机械化学信号通路中的作用
  • 批准号:
    10204959
  • 财政年份:
    2020
  • 资助金额:
    $ 38.85万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了