Disentangling plant cell walls: the characterisation of dynamic polysaccharide interactions in the developing cell wall.

解开植物细胞壁:发育细胞壁中动态多糖相互作用的表征。

基本信息

  • 批准号:
    BB/T009691/1
  • 负责人:
  • 金额:
    $ 38.85万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Plant cell walls surround plant cells, providing structural support which is crucial to allows plants to achieve the diversity of forms we see in nature. Although cell walls are crucial for plant growth and development, they are extremely complex structures and there remains a remarkable amount to learn about the specific biochemical interactions within cell walls. It is becoming increasingly clear that different components of the cell wall interact with each other in a much more complex and dynamic way than previously thought, but the mechanistic significance of this to plant function is thus far unknown. The relative lack of mechanistic understanding of how the cell wall links to whole plant physiology means that very little progress has been made towards manipulating the cell wall, either by genetic modification or by breeding to improve plant performance, and this remains a highly under-exploited area. Cell wall-based biomass is of increasing interest to the biotechnology industry as it aims to provide alternatives to petroleum derived chemicals and materials. Cell wall materials can be deconstructed to individual polysaccharides or component sugars and then synthesised into a wide array of polymers and bio-based plastics and fibres. Companies are being driven towards bio-based by increasingly environmental based consumer choices but as yet many of these plant derived products are not commercially viable due to the challenges associated with deconstructing the cell wall. The cell wall is resistant to degradation and studies have shown that composition can vary widely in response to environmental perturbations making it challenging to predict the composition of biomass. Understanding how cell walls respond to environmental fluctuations and how this altered composition leads to changes in the inter-component interactions within the cell wall is crucially important, not only for maximising the potential of plant-based biotech industries but also for predicting crop responses to the increasingly variable environments predicted due to climate change. This project aims to use a range of molecular and biochemical techniques to understand the dynamic responses of cell walls in response to environmental variations. I will characterise composition and interactions within the developing cell wall and capture their dynamic properties over time. The project will unpick the genetic basis of these cell wall interactions and relate them to whole plant physiology to address the knowledge gap between cell wall biochemistry and downstream plant performance. To achieve these aims I will use a range of cross disciplinary techniques to identify and generate a panel of plants with altered cell-walls. I will screen this panel using monoclonal antibodies which bind specific cell wall components to identify the cell wall composition and their interactions. I will use plant physiology techniques, such as measuring gaseous exchange within the leaves, to link biochemical cell wall interactions to whole plant physiology and ultimately plant performance. The results emerging from this work will identify novel links between cell wall interactions and whole plant performance and characterise developing cell walls in an unprecedented level of detail. This will provide a strong foundational basis for future translation into crop systems and secondary cell walls.
植物细胞壁围绕着植物细胞,提供结构支撑,这对植物实现我们在自然界中看到的各种形式至关重要。尽管细胞壁对植物的生长和发育至关重要,但它们是极其复杂的结构,对于细胞壁内特定的生化相互作用仍有大量需要了解。越来越清楚的是,细胞壁的不同成分之间的相互作用比以前认为的要复杂和动态得多,但这对植物功能的机械意义迄今尚不清楚。相对缺乏对细胞壁如何与整个植物生理联系的机械理解意味着,无论是通过基因改造还是通过育种来改善植物表现,在操纵细胞壁方面取得的进展很少,这仍然是一个高度未被开发的领域。基于细胞壁的生物质越来越受到生物技术行业的关注,因为它旨在提供石油衍生化学品和材料的替代品。细胞壁材料可以被分解成单独的多糖或组成糖,然后被合成成一系列的聚合物和生物基塑料和纤维。由于消费者越来越多地选择基于环境的产品,公司正被驱使转向生物产品,但由于与解构细胞壁相关的挑战,许多这些植物提取的产品在商业上并不可行。细胞壁对降解具有抵抗力,研究表明,细胞的组成可能会因环境扰动而变化很大,这使得预测生物量的组成具有挑战性。了解细胞壁如何对环境波动做出反应,以及这种变化的成分如何导致细胞壁内组分相互作用的变化至关重要,这不仅对于最大限度地发挥以植物为基础的生物技术产业的潜力,而且对于预测作物对气候变化所预测的日益多变的环境的反应至关重要。该项目旨在使用一系列分子和生化技术来了解细胞壁对环境变化的动态反应。我将描述发育中的细胞壁的组成和相互作用,并捕捉它们随着时间的推移的动态特性。该项目将揭开这些细胞壁相互作用的遗传基础,并将它们与整个植物生理学联系起来,以解决细胞壁生化和下游植物表现之间的知识差距。为了实现这些目标,我将使用一系列跨学科技术来识别和生成一组细胞壁发生变化的植物。我将使用结合特定细胞壁成分的单抗对这个小组进行筛选,以确定细胞壁成分及其相互作用。我将使用植物生理学技术,例如测量叶片内的气体交换,将生化细胞壁相互作用与整个植物生理以及最终的植物表现联系起来。这项工作的结果将确定细胞壁相互作用和整个植物表现之间的新联系,并以前所未有的详细程度表征细胞壁的发育。这将为将来转化为作物系统和次生细胞壁提供坚实的基础。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparative meta-proteomic analysis for the identification of novel plasmodesmata proteins and regulatory cues
  • DOI:
    10.1101/2021.05.04.442592
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Kirk;Sam Amsbury;Liam German;Rocio Gaudioso-Pedraza;Yoselin Benitez-Alfonso
  • 通讯作者:
    P. Kirk;Sam Amsbury;Liam German;Rocio Gaudioso-Pedraza;Yoselin Benitez-Alfonso
Altering arabinans increases Arabidopsis guard cell flexibility and stomatal opening.
  • DOI:
    10.1016/j.cub.2022.05.042
  • 发表时间:
    2022-07-25
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Carroll, Sarah;Amsbury, Sam;Durney, Clinton H.;Smith, Richard S.;Morris, Richard J.;Gray, Julie E.;Fleming, Andrew J.
  • 通讯作者:
    Fleming, Andrew J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sam Amsbury其他文献

Altering arabinans increases emArabidopsis/em guard cell flexibility and stomatal opening
  • DOI:
    10.1016/j.cub.2022.05.042
  • 发表时间:
    2022-07-25
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Sarah Carroll;Sam Amsbury;Clinton H. Durney;Richard S. Smith;Richard J. Morris;Julie E. Gray;Andrew J. Fleming
  • 通讯作者:
    Andrew J. Fleming
Sticking to seeds: direct regulation of cellulose synthesis controls seed mucilage development.
  • DOI:
    10.1093/plphys/kiaa021
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Sam Amsbury
  • 通讯作者:
    Sam Amsbury

Sam Amsbury的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Molecular Plant
  • 批准号:
    31224801
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Molecular Plant
  • 批准号:
    31024802
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
不同栽培环境条件下不同基因型牡丹根部细菌种群多样性特征
  • 批准号:
    31070617
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
Journal of Integrative Plant Biology
  • 批准号:
    31024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
植物病毒壳体"智能"纳米载体靶向肿瘤细胞的研究
  • 批准号:
    30973685
  • 批准年份:
    2009
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
南美蟛蜞菊入侵对土壤微生物的影响及反馈作用
  • 批准号:
    30970556
  • 批准年份:
    2009
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目
弓形虫MAG嵌合型类病毒颗粒转基因植物快速高效表达技术平台的建立及其动物口服免疫机制的探索
  • 批准号:
    30872204
  • 批准年份:
    2008
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
梅花植株再生体系及遗传转化体系建立的研究
  • 批准号:
    30371187
  • 批准年份:
    2003
  • 资助金额:
    7.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Multiscale Model for Cell Morphogenesis and Tissue Development in Plant Leaves
职业:植物叶片细胞形态发生和组织发育的多尺度模型
  • 批准号:
    2338630
  • 财政年份:
    2024
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Continuing Grant
Rapid cell-to-cell and plant-to-plant responses to abiotic stress
对非生物胁迫的快速细胞间和植物间反应
  • 批准号:
    2343815
  • 财政年份:
    2024
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Continuing Grant
Disentangling Sugar Signaling in Plants
解开植物中的糖信号传导
  • 批准号:
    10713056
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
Advancing skin cancer prevention by tackling UV-induced clonogenic mutations
通过应对紫外线诱导的克隆突变来促进皮肤癌的预防
  • 批准号:
    10829054
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
Novel Bioprinted Neural Stem Cell-Embedded Hydrogel Matrices for Enhanced Treatment of Glioblastoma
新型生物打印神经干细胞嵌入水凝胶基质,用于增强胶质母细胞瘤的治疗
  • 批准号:
    10749330
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
Identifying, characterising and engineering plant cell wall degrading enzymes for biofuel production
识别、表征和改造用于生物燃料生产的植物细胞壁降解酶
  • 批准号:
    2885870
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Studentship
Development of Spatiotemporal Controlled Bioluminescence in 3D Printed Plant Cell Culture Systems
3D 打印植物细胞培养系统中时空控制生物发光的发展
  • 批准号:
    23KF0253
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CSHL 2023 Eukaryotic DNA Replication and Genome Maintenance Conference
CSHL 2023真核DNA复制与基因组维护会议
  • 批准号:
    10677192
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
Omic and Multidimensional Spatial Atlas of Metastatic Breast Cancer
转移性乳腺癌的组学和多维空间图谱
  • 批准号:
    10818062
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
Structural and Functional Analysis of Nucleocytoplasmic Protein O-Glycosyltransferases in Plants
植物核胞质蛋白 O-糖基转移酶的结构和功能分析
  • 批准号:
    10648930
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了