Transformative Anatomically accurate Microvascular flow Phantoms for Ultrasound therapy research (TAMP-US)
用于超声治疗研究的变革性解剖学精确微血管流动模型 (TAMP-US)
基本信息
- 批准号:BB/T012102/1
- 负责人:
- 金额:$ 18.42万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Using real tissue data we will develop, commission and demonstrate Transformative Anatomically accurate Microvascular flow Phantoms for Ultrasound therapy research (TAMP-US). Using commercially available tools, so that researchers in other labs will be able to replicate our methods for their own needs, we will recreate microvessel networks in hydrogel materials that have similar acoustic and mechanical properties to tissue. These materials are also optically transparent so that we will be able to image our systems using a microscope, and biologically compatible such that we will be able to incorporate cell culture into our systems. Our aim is to create a fully controllable lab-based system suitable for systematic investigation of ultrasound therapy without the need for animal testing.Targeted delivery of drugs is attractive across medicine. It improves patient experience by reducing damage to healthy cells and side effects. It can also lead to higher local drug uptake and better patient outcomes. It is particularly suited to the delivery of chemotherapy in the treatment of cancer. Despite this there are not many practical methods for targeting drug delivery that can be used safely and repeatedly. Ultrasound mediated targeted drug delivery (UmTDD) uses ultrasound to image tissues and identify the region to be treated, and then to excite tiny bubbles of gas that have been delivered to the patient along with the drug they are receiving. These microbubbles are used routinely to increase the brightness of ultrasound images and are naturally eliminated from the body within 30 minutes, but can also act to stimulate tissues and cells to increase their uptake of drugs. UmTDD has shown huge promise but an incomplete understanding of how the microbubbles force greater drug uptake has limited its development as a clinical treatment. One issue is that there are currently no lab-based systems that allow thorough and controlled investigation of UmTDD. Using recent advances in 3D printing that have allowed biologically compatible dyes to be used as photoblockers to create complex 3D channels in soft materials and using microCT to gather real microvessel images we use real tissue data to develop an acoustically compatible and fully controlled system to investigate ultrasound driven MB - microvessel interactions. The platform will allow identification of the factors that define how effective UmTDD will be in a certain circumstance to be identified for the first time. Our systems will incorporate cells to allow the effects to be investigated in the lab and these systems will be available for other researchers to replicate in their own research.
使用真实的组织数据,我们将开发、委托和演示用于超声治疗研究(TAMP-US)的变革性解剖学上精确的微血管血流模型。使用商业上可用的工具,以便其他实验室的研究人员能够根据自己的需要复制我们的方法,我们将在具有与组织相似的声学和机械特性的水凝胶材料中重建微血管网络。这些材料也是光学透明的,因此我们将能够使用显微镜对我们的系统进行成像,并且具有生物兼容性,因此我们将能够将细胞培养融入我们的系统中。我们的目标是创建一个完全可控的基于实验室的系统,适用于超声治疗的系统研究,而不需要动物测试。靶向递送药物在整个医学领域都很有吸引力。它通过减少对健康细胞的损害和副作用来改善患者体验。它还可以导致更高的局部药物摄取率和更好的患者结果。它特别适合于癌症治疗中的化疗输送。尽管如此,没有很多可以安全和重复使用的靶向药物输送的实用方法。超声介导的靶向药物传递(UmTDD)使用超声波对组织成像并确定要治疗的区域,然后激发微小的气体气泡,这些气体已随患者接受的药物一起传递给患者。这些微泡通常被用来增加超声图像的亮度,在30分钟内自然从体内消除,但也可以刺激组织和细胞增加对药物的摄取。UmTDD显示出巨大的前景,但对微泡如何迫使更多的药物摄取的不完全理解限制了其作为临床治疗的发展。一个问题是,目前还没有基于实验室的系统来对UmTDD进行彻底和受控的调查。利用3D打印的最新进展,生物相容染料可以用作光阻滞剂,在软材料中创建复杂的3D通道,并使用MicroCT收集真实的微血管图像,我们使用真实的组织数据来开发一种声学兼容和完全可控的系统,以研究超声波驱动的MB-微血管相互作用。该平台将允许确定在某种情况下确定UmTDD将如何有效的因素,以便首次确定。我们的系统将整合细胞,以便在实验室中研究这些影响,这些系统将可供其他研究人员在自己的研究中复制。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigating multi-material hydrogel three-dimensional printing for in vitro representation of the neo-vasculature of solid tumours: a comprehensive mechanical analysis and assessment of nitric oxide release from human umbilical vein endothelial cells.
- DOI:10.1098/rsos.230929
- 发表时间:2023-08
- 期刊:
- 影响因子:3.5
- 作者:Asciak, Lisa;Gilmour, Lauren;Williams, Jonathan A.;Foster, Euan;Diaz-Garcia, Lara;McCormick, Christopher;Windmill, James F. C.;Mulvana, Helen E.;Jackson-Camargo, Joseph C.;Domingo-Roca, Roger
- 通讯作者:Domingo-Roca, Roger
3D-printed high-resolution microchannels for contrast enhanced ultrasound research
- DOI:10.1109/ius52206.2021.9763442
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:R. Domingo-Roca;L. Gilmour;L. Asciak;S. Sarrigiannidis;O. Dobre;M. Salmerón-Sánchez;M. Sandison;R. O’Leary;J. Jackson-Camargo;H. Mulvana
- 通讯作者:R. Domingo-Roca;L. Gilmour;L. Asciak;S. Sarrigiannidis;O. Dobre;M. Salmerón-Sánchez;M. Sandison;R. O’Leary;J. Jackson-Camargo;H. Mulvana
3D Printing of Noncytotoxic High-Resolution Microchannels in Bisphenol-A Ethoxylate Dimethacrylate Tissue-Mimicking Materials
- DOI:10.1089/3dp.2021.0235
- 发表时间:2022-04-28
- 期刊:
- 影响因子:3.1
- 作者:Domingo-Roca, Roger;Gilmour, Lauren;Mulvana, Helen E.
- 通讯作者:Mulvana, Helen E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Helen Mulvana其他文献
Helen Mulvana的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
"Mimicking Human Head Sound Responses": Towards an Anatomically Accurate Head Prototype for Bone Conduction Crosstalk Cancellation Analysis with Humans
“模仿人类头部声音反应”:构建解剖学上准确的头部原型,用于人类骨传导串扰消除分析
- 批准号:
24K20786 - 财政年份:2024
- 资助金额:
$ 18.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A Biologically Responsive and Anatomically Authentic Human Nasal Model
具有生物响应性和解剖学真实性的人类鼻模型
- 批准号:
DP230100721 - 财政年份:2023
- 资助金额:
$ 18.42万 - 项目类别:
Discovery Projects
In Vivo Quantification of Bone, Ligament, and Soft Tissue Kinematics in Low to High Knee Flexion Tasks for the Development of an Anatomically-Accurate Knee Joint Model
对低至高膝关节屈曲任务中的骨、韧带和软组织运动学进行体内量化,以开发解剖学精确的膝关节模型
- 批准号:
547370-2020 - 财政年份:2022
- 资助金额:
$ 18.42万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Anatomically Guided Sodium MRI: Accurately Monitoring Chronic Ion Pump Dysfunction in the Human Brain
解剖引导钠 MRI:准确监测人脑中的慢性离子泵功能障碍
- 批准号:
10367650 - 财政年份:2022
- 资助金额:
$ 18.42万 - 项目类别:
Anatomically constrained liquid state machines for optimal feedback control
用于最佳反馈控制的解剖学约束液态机
- 批准号:
573931-2022 - 财政年份:2022
- 资助金额:
$ 18.42万 - 项目类别:
University Undergraduate Student Research Awards
Reconstruction of agricultural driven migration of anatomically modern humans using by analysis of 3D cranial homologous models
通过 3D 颅骨同源模型分析,重建解剖学上现代人类的农业驱动迁徙
- 批准号:
22H02709 - 财政年份:2022
- 资助金额:
$ 18.42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Anatomically Guided Sodium MRI: Accurately Monitoring Chronic Ion Pump Dysfunction in the Human Brain
解剖引导钠 MRI:准确监测人脑中的慢性离子泵功能障碍
- 批准号:
10612761 - 财政年份:2022
- 资助金额:
$ 18.42万 - 项目类别:
In Vivo Quantification of Bone, Ligament, and Soft Tissue Kinematics in Low to High Knee Flexion Tasks for the Development of an Anatomically-Accurate Knee Joint Model
对低至高膝关节屈曲任务中的骨、韧带和软组织运动学进行体内量化,以开发解剖学精确的膝关节模型
- 批准号:
547370-2020 - 财政年份:2021
- 资助金额:
$ 18.42万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Neuromodulation of the fear extinction circuit using temporally and anatomically specific TMS in humans
使用人类时间和解剖学特异性 TMS 对恐惧消退回路进行神经调节
- 批准号:
10474634 - 财政年份:2021
- 资助金额:
$ 18.42万 - 项目类别:
Neuromodulation of the fear extinction circuit using temporally and anatomically specific TMS in humans
使用人类时间和解剖学特异性 TMS 对恐惧消退回路进行神经调节
- 批准号:
10651814 - 财政年份:2021
- 资助金额:
$ 18.42万 - 项目类别: