How do the spatiotemporal dynamics of insulin signalling control neuron size and function?
胰岛素信号的时空动态如何控制神经元的大小和功能?
基本信息
- 批准号:BB/T013869/1
- 负责人:
- 金额:$ 79.02万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The brain is staggeringly complex. It is made of billions of neurons that extend tree-like branches and connect with 1000s of partners. These complex networks of connections are essential for the correct functioning of the nervous system, they need to be stable enough to process and store information (memories) but also dynamic to respond and change from experience (learning). How brains are built is still one of the biggest questions in biology.How neuron growth is controlled and how a particular neuron 'knows' what size to reach is intriguing. The growth of a neurons branches determines the potential partners it can make connections with and also sets in place some electrical properties which dictate how it fires. Some neurons have small trees with branches that don't spread very far and process local information within brain circuits whereas others send information long distances, like the neurons that run from your spine down to the muscles that control your big toe. We would like to understand what allows the small neurons to be small and big neurons to be big. To gain new insights into neuron size control we are using the powerful genetics and complex nervous system of fruit flies (Drosophila). Our preliminary data show a pathway called the Insulin/Insulin-like Growth factor signalling and Target of Rapamycin is required to generate appropriately sized trees. We have tested many different neurons in flies and these experiments point toward insulin signalling being a global player in the nervous system. Each neuron appears to have a distinct tuning that sets what size it should be. How this is controlled and what part it plays shaping neurons will be investigated.We are able to watch neurons growing live during metamorphosis using fluorescent proteins from jellyfish and high-magnification microscopes. We are now able to do many new experiments with specially engineered flies where the gene have peen precisely edited. This will allow us to get fine measurements of the components in the pathways we are interested in.Our hope is that we will find something important and universal about nervous system design principles. Alongside this we know that developmental wiring defects can have very serious consequences and manifest as disorders such as autism, schizophrenia and epilepsy. All of which have a massive impact on society. The genes in the pathways above have been found in patients with autism and epilepsy. For both fundamental and medical science we need to know more about how neurons grow and set their size.
大脑是惊人的复杂。它由数十亿个神经元组成,这些神经元延伸出树状分支,并与数千个伙伴连接。这些复杂的连接网络对于神经系统的正确运作至关重要,它们需要足够稳定以处理和存储信息(记忆),但也需要动态响应和改变经验(学习)。大脑是如何构造的仍然是生物学中最大的问题之一。神经元的生长是如何被控制的,以及一个特定的神经元是如何“知道”要达到什么样的大小的,这些都很有趣。神经元分支的生长决定了它可以与之建立联系的潜在伙伴,也决定了一些决定它如何放电的电特性。一些神经元有小树,树枝不会传播得很远,并在大脑回路中处理本地信息,而另一些神经元则将信息发送到长距离,比如从脊椎到控制大脚趾的肌肉的神经元。我们想知道是什么让小神经元变小,让大神经元变大。为了获得对神经元大小控制的新见解,我们正在使用果蝇强大的遗传学和复杂的神经系统。我们的初步数据显示,需要一种称为胰岛素/胰岛素样生长因子信号传导和雷帕霉素靶点的途径来产生适当大小的树木。我们已经测试了果蝇中许多不同的神经元,这些实验表明胰岛素信号在神经系统中起着全球性的作用。每个神经元似乎都有一个独特的调谐,它应该是什么大小。这是如何被控制的,以及它在塑造神经元中扮演了什么角色,我们将进行研究。我们能够使用水母的荧光蛋白和高倍显微镜观察神经元在变态过程中的生长。我们现在能够用经过特殊工程改造的果蝇做许多新的实验,这些果蝇的基因经过精确编辑。这将使我们能够对我们感兴趣的通路中的组件进行精细测量,我们希望我们将发现一些重要的和普遍的神经系统设计原则。除此之外,我们知道发育性布线缺陷可能会产生非常严重的后果,并表现为自闭症,精神分裂症和癫痫等疾病。所有这些都对社会产生了巨大的影响。上述通路中的基因已在自闭症和癫痫患者中发现。对于基础科学和医学科学,我们需要更多地了解神经元如何生长和设置它们的大小。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Darren Williams其他文献
Dynamic network service installation in an active network
活动网络中的动态网络服务安装
- DOI:
10.1016/s1389-1286(01)00152-9 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Amila Fernando;Darren Williams;A. Fekete;B. Kummerfeld - 通讯作者:
B. Kummerfeld
A Series of Papaya-Associated Salmonella Illness Outbreak Investigations in 2017 and 2019 - A Focus on Traceback, Laboratory, and Collaborative Efforts.
2017 年和 2019 年一系列与木瓜相关的沙门氏菌疾病暴发调查 - 重点是追溯、实验室和协作努力。
- DOI:
10.4315/jfp-21-082 - 发表时间:
2021 - 期刊:
- 影响因子:2
- 作者:
B. Whitney;M. McClure;Rashida Hassan;Mary A. Pomeroy;S. Seelman;Lauren N Singleton;T. Blessington;Cerisé Hardy;J. Blankenship;E. Pereira;Chelsea N Davidson;Yan Luo;J. Pettengill;Phillip E. Curry;Terri McConnell;L. Gieraltowski;C. Schwensohn;C. Basler;Kevin Fritz;C. McKenna;Kenneth Nieves;J. Oliveira;Ana Lilia Sandoval;Alvin J. Crosby;Darren Williams;Kia Crocker;Deepam Thomas;Tara Fulton;Loel Muetter;Lan Li;E. Omoregie;K. Holloman;C. Brennan;Nikeya Thomas;Amber Barnes;S. Viazis - 通讯作者:
S. Viazis
PID tuning for a control system using PZT sensors and actuators
- DOI:
10.1007/s10999-025-09770-8 - 发表时间:
2025-05-22 - 期刊:
- 影响因子:3.600
- 作者:
Darren Williams;Hamed Haddad Khodaparast;Shakir Jiffri - 通讯作者:
Shakir Jiffri
Impact of unit-wide chlorhexidine bathing in intensive care on bloodstream infection and drug-resistant organism acquisition.
重症监护室全单位洗必泰沐浴对血流感染和耐药微生物获得的影响。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:2.9
- 作者:
K. Urbancic;J. Mårtensson;N. Glassford;Christopher T. Eyeington;R. Robbins;P. Ward;Darren Williams;Paul D. R. Johnson;R. Bellomo - 通讯作者:
R. Bellomo
Defining a vibration test profile for assessing the durability of electric motorcycle battery assemblies
- DOI:
10.1016/j.jpowsour.2022.232541 - 发表时间:
2023-02-15 - 期刊:
- 影响因子:
- 作者:
James Michael Hooper;Darren Williams;Kieran Roberts-Bee;Andrew McGordon;Phil Whiffin;James Marco - 通讯作者:
James Marco
Darren Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Darren Williams', 18)}}的其他基金
Studying circuit function and behaviour in Drosophila following disruptions in developmental remodeling
研究果蝇发育重塑中断后的回路功能和行为
- 批准号:
BB/P025552/1 - 财政年份:2017
- 资助金额:
$ 79.02万 - 项目类别:
Research Grant
Uncovering the role of the ESCRT machinery in neuron pruning
揭示 ESRT 机制在神经元修剪中的作用
- 批准号:
BB/L022672/1 - 财政年份:2014
- 资助金额:
$ 79.02万 - 项目类别:
Research Grant
Cellular and molecular mechanisms of dendrite pruning in Drosophila
果蝇树突修剪的细胞和分子机制
- 批准号:
G0600182/1 - 财政年份:2007
- 资助金额:
$ 79.02万 - 项目类别:
Research Grant
LExEn: Extraordinary Climates of Earth-Like Planets: GCM Simulations at High Obliquity
LExEn:类地行星的非凡气候:高倾角的 GCM 模拟
- 批准号:
9977980 - 财政年份:1999
- 资助金额:
$ 79.02万 - 项目类别:
Standard Grant
相似国自然基金
复合菌剂在高DO下的好氧反硝化脱氮机制及工艺调控研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
内生真菌DO14多糖PPF30调控铁皮石斛葡甘聚糖生物合成的机制
- 批准号:LZ23H280001
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于捕获“Do not eat me”信号的肺癌异质性分子功能可视化及机理研究
- 批准号:92259102
- 批准年份:2022
- 资助金额:60.00 万元
- 项目类别:重大研究计划
基于达文波特星形酵母Do18强化发酵的糟带鱼生物胺生物调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于PO-DGT原理的沉积物微界面pH-DO-磷-重金属的精细化同步成像技术研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
CD38/cADPR信号通路异常促逼尿肌过度活动(DO)发生的分子机制及干预措施研究
- 批准号:81770762
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
USP2介导RagA去泛素化稳定肿瘤细胞“Do not eat me”信号的机制研究
- 批准号:81773040
- 批准年份:2017
- 资助金额:62.0 万元
- 项目类别:面上项目
抑制骨细胞来源Sclerostin蛋白对颌面部DO成骨的协同促进作用
- 批准号:81771104
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
内生真菌DO14促铁皮石斛多糖成分积累的作用机制
- 批准号:31600259
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
末次冰期东亚季风DO事件的定年、转型及亚旋回研究
- 批准号:40702026
- 批准年份:2007
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 79.02万 - 项目类别:
Fellowship
The Politics of Financial Citizenship - How Do Middle Class Expectations Shape Financial Policy and Politics in Emerging Market Democracies?
金融公民政治——中产阶级的期望如何影响新兴市场民主国家的金融政策和政治?
- 批准号:
EP/Z000610/1 - 财政年份:2024
- 资助金额:
$ 79.02万 - 项目类别:
Research Grant
How do healthy brains drive a healthy economy? A novel occupational neuroscience approach
健康的大脑如何推动健康的经济?
- 批准号:
MR/X034100/1 - 财政年份:2024
- 资助金额:
$ 79.02万 - 项目类别:
Fellowship
Collaborative Research: How do plants control sperm nuclear migration for successful fertilization?
合作研究:植物如何控制精子核迁移以成功受精?
- 批准号:
2334517 - 财政年份:2024
- 资助金额:
$ 79.02万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: Do social environments influence the timing of male maturation in a close human relative?
博士论文研究:社会环境是否影响人类近亲的男性成熟时间?
- 批准号:
2341354 - 财政年份:2024
- 资助金额:
$ 79.02万 - 项目类别:
Standard Grant
Do fine-scale water column structure and particle aggregations favor gelatinous-dominated food webs in subtropical continental shelf environments?
细尺度水柱结构和颗粒聚集是否有利于亚热带大陆架环境中以凝胶状为主的食物网?
- 批准号:
2244690 - 财政年份:2024
- 资助金额:
$ 79.02万 - 项目类别:
Standard Grant
Do root microbiomes control seagrass response to environmental stress?
根部微生物组是否控制海草对环境压力的反应?
- 批准号:
DP240100566 - 财政年份:2024
- 资助金额:
$ 79.02万 - 项目类别:
Discovery Projects
Do autoantibodies to aberrantly glycosylated MUC1 drive extra-articular rheumatoid arthritis, and can GSK assets prevent driver antigen formation?
针对异常糖基化 MUC1 的自身抗体是否会导致关节外类风湿性关节炎,GSK 资产能否阻止驱动抗原形成?
- 批准号:
MR/Y022947/1 - 财政年份:2024
- 资助金额:
$ 79.02万 - 项目类别:
Research Grant
Do oxidative breaks accumulate at gene regulatory regions in disease?
疾病中的基因调控区域是否会积累氧化断裂?
- 批准号:
MR/Y000021/1 - 财政年份:2024
- 资助金额:
$ 79.02万 - 项目类别:
Research Grant
Why Do Breeders Tolerate Non-breeders In Animal Societies?
为什么动物社会中的饲养者容忍非饲养者?
- 批准号:
2333286 - 财政年份:2024
- 资助金额:
$ 79.02万 - 项目类别:
Continuing Grant