ISOFLIM: Isotropic resolution fluorescence lifetime imaging of 3D neuron cultures

ISOFLIM:3D 神经元培养物的各向同性分辨率荧光寿命成像

基本信息

  • 批准号:
    BB/T014318/1
  • 负责人:
  • 金额:
    $ 73.12万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Working at the very forefront of microscope development, this multidisciplinary research team aim to explore the four dimensions of space and time within live neurons. Using bioengineering, we have developed novel ways of training neurons to grow within specially created channels in biomaterials. The neurons make connections in these channels which enable us to investigate cell-to-cell communication in real-time as it would in the brain - in an entirely controllable way. Once we have grown these "wetware artificial neural networks" we can image their complex signalling behaviour using advanced microscopy. In this proposal, a new microscope concept will be developed which pushes the envelope of what can be seen at the cellular level. By creating a 3-dimensional lattice of optical foci in the sample and, in parallel, reading them out, we can create a 3D representation of the sample. Using ultra-sophisticated camera technology which was developed principally for 3D detection and ranging (LIDAR) in the automotive industry, called SPAD sensor arrays, we will measure the speed at which biological processes such as energy metabolism occur using a technique called fluorescence lifetime imaging microscopy (FLIM). FLIM is incredibly powerful for detecting changes in fluorescent molecules and can be used to measure protein-protein interactions or changes in protein conformation - essential processes for control of cellular behaviour.By adding fluorescent tags to proteins and illuminating them with a laser we can visualise them in a cell using SPAD sensor arrays. Energy transfer occurs when two of these tags with different colours come within a certain distance of each other, changing the amount of light that they emit. This Fluorescence Resonance Energy Transfer (FRET) can be measured to detect protein interactions. FLIM measures how the fluorescence lifetime changes during FRET and is not dependent on how much protein is present, making it a robust method for detecting protein interactions in live cells. The second difficulty in measuring FRET in moving cells, is that many imaging techniques are too slow and the amount of light from the laser can damage the cell. Our new microscopy method, ISO-FLIM (since it generates a isotropic resolution image), generates beams in a sheet of light that is shone onto the sample, which is recorded by a sensitive camera, making it fast and non-damaging to the cell. Our new method combines these techniques to create a new microscope to accurately and rapidly measure protein interactions in living neurons, allowing researchers to look at the 'real time' mechanics of protein function.
这个多学科的研究团队站在显微镜发展的前沿,旨在探索活神经元内的空间和时间的四个维度。利用生物工程,我们开发了新的方法来训练神经元在生物材料中专门创建的通道中生长。神经元在这些通道中建立联系,使我们能够像在大脑中一样实时研究细胞间的交流--以一种完全可控的方式。一旦我们培育出这些“湿式人工神经网络”,我们就可以用先进的显微镜来描绘它们复杂的信号行为。在这项提议中,一个新的显微镜概念将被开发出来,它将推动在细胞水平上所能看到的东西的极限。通过在样品中创建光学焦点的三维晶格,并并行地读出它们,我们可以创建样品的3D表示。利用主要用于汽车行业3D检测和测距(LIDAR)的超精密相机技术,称为SPAD传感器阵列,我们将使用一种名为荧光寿命成像显微镜(FLIM)的技术来测量能量代谢等生物过程发生的速度。Flim在检测荧光分子的变化方面非常强大,可以用来测量蛋白质-蛋白质相互作用或蛋白质构象的变化--控制细胞行为的基本过程。通过在蛋白质上添加荧光标签并用激光照射它们,我们可以使用SPAD传感器阵列在细胞中可视化它们。当其中两个不同颜色的标签彼此相距一定距离时,就会发生能量转移,从而改变它们发出的光量。这种荧光共振能量转移(FRET)可以被测量来检测蛋白质的相互作用。Flim测量荧光寿命在FRET过程中如何变化,并且不依赖于存在多少蛋白质,使其成为检测活细胞中蛋白质相互作用的可靠方法。测量移动细胞中的FRET的第二个困难是,许多成像技术太慢,来自激光的光量可能会损害细胞。我们的新显微镜方法ISO-Flim(因为它生成了各向同性的分辨率图像)在一张照射到样品上的光线中产生光束,由灵敏的相机记录下来,使其快速且对细胞没有损害。我们的新方法结合了这些技术,创造了一种新的显微镜,可以准确、快速地测量活着的神经元中的蛋白质相互作用,使研究人员能够观察蛋白质功能的“实时”机制。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
In situ FRET-based localization of the N terminus of myosin binding protein-C in heart muscle cells.
基于 FRET 的原位心肌细胞中肌球蛋白结合蛋白 C 的 N 末端定位。
FRET Sensor-Modified Synthetic Hydrogels for Real-Time Monitoring of Cell-Derived Matrix Metalloproteinase Activity using Fluorescence Lifetime Imaging
  • DOI:
    10.1002/adfm.202309711
  • 发表时间:
    2024-01-30
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Yan,Ziqian;Kavanagh,Thomas;Gentleman,Eileen
  • 通讯作者:
    Gentleman,Eileen
Cellular Imaging and Time-Domain FLIM Studies of Meso-Tetraphenylporphine Disulfonate as a Photosensitising Agent in 2D and 3D Models
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Ameer-Beg其他文献

Simon Ameer-Beg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Ameer-Beg', 18)}}的其他基金

flIMAGIN3D_Doctoral Network for a Shared Excellence of Fluorescent Lifetime Imaging Microscopy in Biomedical Applications
flIMAGIN3D_生物医学应用中荧光寿命成像显微镜共享卓越的博士网络
  • 批准号:
    EP/X027988/1
  • 财政年份:
    2023
  • 资助金额:
    $ 73.12万
  • 项目类别:
    Research Grant
Quantitative Multidimensional Imaging: A Centre of Excellence for Fluorescence Lifetime Imaging Microscopy
定量多维成像:荧光寿命成像显微镜卓越中心
  • 批准号:
    MR/X012794/1
  • 财政年份:
    2022
  • 资助金额:
    $ 73.12万
  • 项目类别:
    Research Grant
Multiplexed multiphoton fluorescence lifetime microscopy: Real time 3D imaging of protein-protein interactions by FRET
多重多光子荧光寿命显微镜:通过 FRET 对蛋白质-蛋白质相互作用进行实时 3D 成像
  • 批准号:
    BB/I022074/1
  • 财政年份:
    2011
  • 资助金额:
    $ 73.12万
  • 项目类别:
    Research Grant

相似海外基金

Development of single-protein-molecule isotropic microscopy
单蛋白质分子各向同性显微镜的发展
  • 批准号:
    24K18359
  • 财政年份:
    2024
  • 资助金额:
    $ 73.12万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of the extraordinarily low friction at the isotropic-liquid crystal interface
阐明各向同性液晶界面的极低摩擦
  • 批准号:
    22KJ2913
  • 财政年份:
    2023
  • 资助金额:
    $ 73.12万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Creation of 3D pi-stacking system for isotropic organic semiconductors
创建各向同性有机半导体的 3D pi 堆叠系统
  • 批准号:
    22K19038
  • 财政年份:
    2022
  • 资助金额:
    $ 73.12万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of 3-dimensional isotropic fiber-reinforced plastics by using sea urchin-like carbon particles
利用海胆状碳颗粒开发三维各向同性纤维增强塑料
  • 批准号:
    21K04663
  • 财政年份:
    2021
  • 资助金额:
    $ 73.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of 3D nanostructured magnetic materials that can obtain high isotropic magnetic force
开发可以获得高各向同性磁力的3D纳米结构磁性材料
  • 批准号:
    21K18994
  • 财政年份:
    2021
  • 资助金额:
    $ 73.12万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of isotropic fiber reinforced resin containing siliconcarbide long and short fiber.
开发含有碳化硅长短纤维的各向同性纤维增强树脂。
  • 批准号:
    21K17019
  • 财政年份:
    2021
  • 资助金额:
    $ 73.12万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of conductive organic materials with strongly isotropic lattice and exploration of battery functions
强各向同性晶格导电有机材料的开发及电池功能的探索
  • 批准号:
    21K20532
  • 财政年份:
    2021
  • 资助金额:
    $ 73.12万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Optically isotropic liquid crystal based on designed defect-distribution and polarization-independent electrooptic device
基于设计的缺陷分布和偏振无关电光器件的光学各向同性液晶
  • 批准号:
    21K18722
  • 财政年份:
    2021
  • 资助金额:
    $ 73.12万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Excursions from Hyperplanes for Isotropic Stable Processes
各向同性稳定过程的超平面偏移
  • 批准号:
    2436352
  • 财政年份:
    2020
  • 资助金额:
    $ 73.12万
  • 项目类别:
    Studentship
Isotropic motives and affine quadrics
各向同性动机和仿射二次曲面
  • 批准号:
    EP/T012625/1
  • 财政年份:
    2020
  • 资助金额:
    $ 73.12万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了