Isotropic motives and affine quadrics
各向同性动机和仿射二次曲面
基本信息
- 批准号:EP/T012625/1
- 负责人:
- 金额:$ 45.6万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The subject area of this proposal is the new motivic invariants of algebraic varieties introduced by the principal investigator. These methods enhance and extend the groundbreaking development in algebra associated with the names of V.Voevodsky (Fields Medal 2002), M.Levine, A.Merkurjev, F.Morel, M.Rost, A.Suslin.The proposed research lies at the boundary of algebraic geometry, topology and algebra. These areas use different sets of tools, and any connection between them permits to study the same mathematical object from different perspectives. Topology is a "flexible version" of geometry, and the simplest topological object is a point. In algebraic geometry there are also points, but these depend on the choice of a field, and so, substantially vary in shape. This is the source of richness of the algebro-geometric world. In fact, as was demonstrated by the spectacular work of Morel-Voevodsky, the topological world is just a "toy version" of it. The basic information on a topological object is contained in its homology, while the homological information on an algebraic variety is encoded in its motive. The theory of such motives was developed by Voevodsky.The principal investigator has introduced the new approach to the study of motives based on the, so called, "isotropic realization functors", which assign to a motive a family of its "shadows". These "shadows" are parameterized by the extensions of the ground field (or, all the algebro-geometric points, if you want) and are similar in complexity to "topological motives" (singular complexes). Thus, a complicated object is substituted by an array of simple ones.The principal aim of the proposal is to study these functors and extend them to a complete motivic invariant. To establish the connection to the numerical equivalence of algebraic cycles with finite and rational coefficients. To apply them to the computation of invariants of quadrics and the Picard group of the Voevodsky category, as well as to the Rost Nilpotence Conjecture and the Standard Conjectures on algebraic cycles. The second aim of the proposal is to generalize these invariants to the homotopic context, and study "isotropic" versions of classical topological objects.The research will be undertaken at the School of Mathematical Sciences, University of Nottingham.
这个建议的主题领域是新的motivic不变量的代数品种介绍的首席研究员。这些方法增强和扩展了与V.Voevodsky(Fields Medal 2002),M.Levine,A.Merkurjev,F.Morel,M.Rost,A.Suslin的名字相关的代数的突破性发展。这些领域使用不同的工具集,它们之间的任何联系都允许从不同的角度研究同一个数学对象。拓扑是几何的“灵活版本”,最简单的拓扑对象是点。在代数几何中也有点,但这些点取决于场的选择,因此形状上有很大的不同。这是代数几何世界丰富性的源泉。事实上,正如莫雷尔-沃沃茨基的精彩著作所证明的那样,拓扑世界只是它的“玩具版本”,拓扑对象的基本信息包含在其同调中,而代数簇的同调信息则编码在其动机中。这种动机的理论是由Voevodsky发展的。主要研究者介绍了新的方法来研究动机的基础上,所谓的“各向同性实现函子”,它分配给一个动机的家庭,它的“阴影”。这些“阴影”由基场的扩张(或者,如果你愿意,所有的代数几何点)参数化,并且在复杂性上类似于“拓扑动机”(奇异复形)。因此,一个复杂的对象被一个简单的数组所取代。该建议的主要目的是研究这些函子,并将其扩展到一个完整的motivic不变量。建立与有限有理系数代数圈的数值等价的联系。应用于二次曲面和Voevodsky范畴的Picard群的不变量的计算,以及Rost Nilerian猜想和代数圈上的标准猜想。该提案的第二个目的是将这些不变量推广到同伦上下文中,并研究经典拓扑对象的“各向同性”版本。该研究将在诺丁汉大学数学科学学院进行。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Isotropic and numerical equivalence for Chow groups and Morava K-theories
Chow 群和 Morava K 理论的各向同性和数值等价
- DOI:10.48550/arxiv.2307.15148
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Vishik A
- 通讯作者:Vishik A
On isotropic and numerical equivalence of cycles
关于循环的各向同性和数值等价性
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Alexander Vishik
- 通讯作者:Alexander Vishik
On the Balmer spectrum of Morel-Voevodsky category
莫雷尔-沃沃茨基范畴的巴尔默谱
- DOI:10.48550/arxiv.2309.09077
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Du P
- 通讯作者:Du P
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Vishik其他文献
Documenta Mathematica, Extra Volume: Andrei A. Suslin 60-th birthday
数学文献展,额外卷:安德烈·A·苏斯林 (Andrei A. Suslin) 60 岁生日
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Alexander Vishik - 通讯作者:
Alexander Vishik
Alexander Vishik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Vishik', 18)}}的其他基金
Quadratic Forms and Algebraic Cobordism
二次形式和代数共边
- 批准号:
EP/G032556/1 - 财政年份:2009
- 资助金额:
$ 45.6万 - 项目类别:
Research Grant
相似海外基金
Understanding the motives and consequences of parents' educational investment : Competition, Parental Aversion, and Intergenerational mobility.
了解父母教育投资的动机和后果:竞争、父母厌恶和代际流动。
- 批准号:
24K16383 - 财政年份:2024
- 资助金额:
$ 45.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference: Algebraic Cycles, Motives and Regulators
会议:代数环、动机和调节器
- 批准号:
2401025 - 财政年份:2024
- 资助金额:
$ 45.6万 - 项目类别:
Standard Grant
Diversified study on Manin's conjecture for rational points/rational curves/motives
马宁有理点/有理曲线/动机猜想的多元化研究
- 批准号:
23H01067 - 财政年份:2023
- 资助金额:
$ 45.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Children's Choice of Residence and Intra-Family Division of Bequests in Strategic Bequest Motives: Who Will Inherit the House and Take Care of the Parents?
战略性遗赠动机中子女的居住地选择与家庭内部遗赠分割:谁将继承房屋并照顾父母?
- 批准号:
23K01438 - 财政年份:2023
- 资助金额:
$ 45.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hitting Close to Home: A Multi-Method Investigation of Neighborhood Characteristics and Drinking Motives on Alcohol-Related Health Disparities
切中要害:对社区特征和饮酒动机对酒精相关健康差异的多方法调查
- 批准号:
10748631 - 财政年份:2023
- 资助金额:
$ 45.6万 - 项目类别:
Mellin motives, periods and high energy physics
梅林的动机、周期和高能物理学
- 批准号:
EP/W020793/1 - 财政年份:2022
- 资助金额:
$ 45.6万 - 项目类别:
Fellowship
Quantum Geometry of Moduli Spaces and Motives
模空间和动机的量子几何
- 批准号:
2153059 - 财政年份:2022
- 资助金额:
$ 45.6万 - 项目类别:
Continuing Grant
p-Adic variation of motives
动机的 p-Adic 变化
- 批准号:
RGPIN-2022-04711 - 财政年份:2022
- 资助金额:
$ 45.6万 - 项目类别:
Discovery Grants Program - Individual
Research on Motives and Conditions for Development of Rural Community Resources by Agricultural Corporations
农业企业开发农村社区资源的动因与条件研究
- 批准号:
22K05872 - 财政年份:2022
- 资助金额:
$ 45.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Scholars' Award: Human Motives - Egoism, hedonism, and the science of affect
学者奖:人类动机——利己主义、享乐主义和情感科学
- 批准号:
2143473 - 财政年份:2022
- 资助金额:
$ 45.6万 - 项目类别:
Standard Grant