Amino acid availability acts as a critical environmental rheostat of mucosal ILC2 responses

氨基酸可用性是粘膜 ILC2 反应的关键环境变阻器

基本信息

  • 批准号:
    BB/T014482/1
  • 负责人:
  • 金额:
    $ 61.46万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

Our intestines are continually exposed to a wide range of stimuli from the environment in the form of bacteria - both beneficial and harmful - and metabolically active molecules released during the digestion of food. The immune system continually acts to keep the intestine healthy and functioning normally, and to prevent any damage caused by infections or chemicals entering the body during feeding. Recent advances have shown that the balance of bacterial and dietary-derived signals in the intestine dramatically alters the way the immune system responds, and changes in this balance can result in reduced immunity to infection, inflammation or even the progression of obesity or cancer. However, the precise nature of these environmental signals and the way immune cells respond to them remains unclear, blocking the development of new treatments aimed at modifying environmental signals in the gut, or targeting the immune cell sensors that detect them.In this project we will build upon new and exciting early work in our lab that suggest that a population of tissue-resident innate immune cells continually sense the intestinal environment for changes in a family of so-called "essential" amino acids. These amino acids are critical to keep us healthy but cannot be made by human cells and must be ingested from digestion of food in the diet. This particular population of gut-resident immune cells constantly surveys the intestine for potential danger, and responds quickly in response to danger or infections to launch protective immunity and to repair the tissue. The speed of this response is highly reliant on the ability to sense changes in the gut environment, as well as the cells ability to import basic building blocks of proteins - in the form of amino acids - that act to "fuel" immune function. We show these cells have a much higher ability to sense changes in intestinal amino acid levels compared to other immune cells, which allows them to generate an appropriate fast and powerful immune response. In this proposal we suggest that the ability of these immune cells to sense essential amino acids is critical for the intestinal immune system to sense infections or potential danger.We propose to further explore this hypothesis using exciting, new experimental tools and approaches which will allow us to determine exactly how these critical immune cells respond to changes in amino acids in the intestinal environment. In particular, we have identified two key genes that encode for amino acid "transporters" that detect and take up amino acids into immune cells. Using models in which these genes have been deleted within immune cells we have generated early findings which suggest the levels of amino acids both outside and inside an immune cell determine the degree to which that cell can perform it's tissue protective functions and respond to intestinal infection.Our central objectives are to utilize new technologies and experimental tools in the lab to better understand how immune cells sense their environment - particularly how they respond to changes in important nutrients and metabolites to ensure appropriate responses that subsequently keep our intestines healthy. These findings could have important consequences for a wide range of intestinal diseases by helping us to understand how environment risk factors such as diet and infections alter the function of the immune system and determine intestinal health.
我们的肠道不断暴露于环境中细菌形式的各种刺激-有益的和有害的-以及在消化食物过程中释放的代谢活性分子。免疫系统不断发挥作用,以保持肠道健康和正常运作,并防止在进食期间感染或化学物质进入身体造成的任何损害。最近的进展表明,肠道中细菌和饮食来源的信号的平衡极大地改变了免疫系统的反应方式,这种平衡的变化可能导致对感染,炎症甚至肥胖或癌症进展的免疫力降低。然而,这些环境信号的确切性质以及免疫细胞对它们的反应方式仍不清楚,阻碍了旨在改变肠道环境信号的新治疗方法的开发,或靶向检测它们的免疫细胞传感器。在这个项目中,我们将建立在我们实验室新的和令人兴奋的早期工作,这些工作表明,一群组织-固有的固有免疫细胞持续感知肠道环境中所谓的“必需”氨基酸家族的变化。这些氨基酸对保持我们的健康至关重要,但不能由人体细胞制造,必须从饮食中的食物消化中摄取。这种特殊的肠道免疫细胞群体不断地调查肠道潜在的危险,并迅速响应危险或感染,以启动保护性免疫并修复组织。这种反应的速度高度依赖于感知肠道环境变化的能力,以及细胞以氨基酸形式输入蛋白质的基本构建模块的能力,这些蛋白质可以“燃料”免疫功能。我们发现,与其他免疫细胞相比,这些细胞具有更高的感知肠道氨基酸水平变化的能力,这使它们能够产生适当的快速和强大的免疫反应。在这个提议中,我们认为这些免疫细胞感知必需氨基酸的能力对于肠道免疫系统感知感染或潜在危险是至关重要的,我们建议使用令人兴奋的新实验工具和方法来进一步探索这一假设,这将使我们能够准确地确定这些关键免疫细胞如何对肠道环境中氨基酸的变化做出反应。特别是,我们已经确定了两个关键基因编码的氨基酸“转运蛋白”,检测和采取氨基酸进入免疫细胞。利用这些基因在免疫细胞中被删除的模型,我们已经产生了早期的发现,这些发现表明免疫细胞内外的氨基酸水平决定了细胞能够在多大程度上执行其组织保护功能并对肠道感染做出反应。我们的中心目标是利用实验室中的新技术和实验工具来更好地了解免疫细胞如何感知它们的环境-特别是它们如何应对重要营养素和代谢物的变化,以确保适当的反应,从而保持我们的肠道健康。这些发现可能会对各种肠道疾病产生重要影响,帮助我们了解环境风险因素(如饮食和感染)如何改变免疫系统的功能并决定肠道健康。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bcl-2 supports survival and metabolic fitness of quiescent tissue-resident ILC3.
  • DOI:
    10.1016/j.mucimm.2023.07.001
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    8
  • 作者:
    King, James I.;Melo-Gonzalez, Felipe;Malengier-Devlies, Bert;Tacho-Pinot, Roser;Magalhaes, Marlene S.;Hodge, Suzanne H.;Ros, Xavier Romero;Gentek, Rebecca;Hepworth, Matthew R.
  • 通讯作者:
    Hepworth, Matthew R.
Regulation of systemic metabolism by tissue-resident immune cell circuits.
  • DOI:
    10.1016/j.immuni.2023.05.001
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    32.4
  • 作者:
    Joey H. Li;M. Hepworth;Timothy E. O’Sullivan
  • 通讯作者:
    Joey H. Li;M. Hepworth;Timothy E. O’Sullivan
Amino acid availability acts as a metabolic rheostat to determine the magnitude of ILC2 responses.
Rhythmicity of intestinal IgA responses confers oscillatory commensal microbiota mutualism.
  • DOI:
    10.1126/sciimmunol.abk2541
  • 发表时间:
    2022-09-02
  • 期刊:
  • 影响因子:
    24.8
  • 作者:
    Penny HA;Domingues RG;Krauss MZ;Melo-Gonzalez F;Lawson MAE;Dickson S;Parkinson J;Hurry M;Purse C;Jegham E;Godinho-Silva C;Rendas M;Veiga-Fernandes H;Bechtold DA;Grencis RK;Toellner KM;Waisman A;Swann JR;Gibbs JE;Hepworth MR
  • 通讯作者:
    Hepworth MR
Group 2 Innate Lymphoid Cells Are Detrimental to the Control of Infection with Francisella tularensis.
  • DOI:
    10.4049/jimmunol.2100651
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Dow, Joshua;Cytlak, Urszula M.;Casulli, Joshua;McEntee, Craig P.;Smedley, Catherine;Hodge, Suzanne H.;D'Elia, Riccardo, V;Hepworth, Matthew R.;Travis, Mark A.
  • 通讯作者:
    Travis, Mark A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Hepworth其他文献

Matthew Hepworth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于F/IGF1R/PKC ζ 通路研究夏枯草中 Mesonolic acid B抑制RSV感染性肺炎的 作用机制
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Quinic acid通过抑制肠道菌群代谢产物脱氧胆酸调节巨噬细胞M1向M2极化改善动脉粥样硬化的机制研究
  • 批准号:
    2025JJ80556
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
脂肪酸α-dimorphecolicacid抑制NF-κB信号介导的小胶质细胞炎症缓解多发性硬化的免疫代谢调控机制研究
  • 批准号:
    QN25H310018
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
巨噬细胞来源代谢物suberic acid抑制蜕膜早衰防治早产的作用机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    青年科学基金项目
色氨酸代谢产物Kynurenic Acid在脓毒症肠损伤中的诊断价值及其机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    5.0 万元
  • 项目类别:
    省市级项目
肠道菌群介导的脱氧胆酸激活S1PR2/NLRP3/IL-1β通路在炎症性肠病合并艰难梭菌感染中的致病机制研究
  • 批准号:
    82372306
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
α-酮戊二酸调控ACMSD介导犬尿氨酸通路代谢重编程在年龄相关性听力损失中的作用及机制研究
  • 批准号:
    82371150
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
“肠—肝轴”PPARα/CYP8B1胆汁酸合成信号通路在减重手术改善糖脂代谢中的作用与机制
  • 批准号:
    82370902
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
转运蛋白RCP调控巨噬细胞脂肪酸氧化参与系统性红斑狼疮发病的机制研究
  • 批准号:
    82371798
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
BRPF1 m6A修饰异常通过重塑BCAT1超级增强子介导Setd2缺陷型肾癌支链氨基酸代谢成瘾的机制研究
  • 批准号:
    82372724
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
  • 批准号:
    10761044
  • 财政年份:
    2023
  • 资助金额:
    $ 61.46万
  • 项目类别:
Mechanisms of amino-acid sensing by the GATOR complex
GATOR 复合物的氨基酸传感机制
  • 批准号:
    10716059
  • 财政年份:
    2023
  • 资助金额:
    $ 61.46万
  • 项目类别:
A tRNA synthetase is an amino acid sensor for TOR in plants
tRNA 合成酶是植物中 TOR 的氨基酸传感器
  • 批准号:
    10795209
  • 财政年份:
    2023
  • 资助金额:
    $ 61.46万
  • 项目类别:
Molecular mechanisms behind microbiota regulation of host amino acid and glucose homeostasis
微生物群调节宿主氨基酸和葡萄糖稳态背后的分子机制
  • 批准号:
    10639042
  • 财政年份:
    2023
  • 资助金额:
    $ 61.46万
  • 项目类别:
Amino acid mimicry: Insights into glyphosate transport and toxicity to mitochondria
氨基酸拟态:深入了解草甘膦转运和线粒体毒性
  • 批准号:
    10573869
  • 财政年份:
    2023
  • 资助金额:
    $ 61.46万
  • 项目类别:
Investigating the Lysosome and Plasma Membrane Systems in Protecting Cells Against Age-induced Amino Acid Toxicity
研究溶酶体和质膜系统保护细胞免受年龄诱导的氨基酸毒性的作用
  • 批准号:
    10680314
  • 财政年份:
    2023
  • 资助金额:
    $ 61.46万
  • 项目类别:
A tRNA synthetase is an amino acid sensor for TOR in plants
tRNA 合成酶是植物中 TOR 的氨基酸传感器
  • 批准号:
    10705030
  • 财政年份:
    2022
  • 资助金额:
    $ 61.46万
  • 项目类别:
Quantifying Enteric Metabolism of Branched-chain Amino Acids in Relation to Other Dietary and Microbiota Nutrients
量化支链氨基酸与其他膳食和微生物营养素相关的肠道代谢
  • 批准号:
    10614000
  • 财政年份:
    2022
  • 资助金额:
    $ 61.46万
  • 项目类别:
Context dependent amino acid availability and sensing determines humoral immunity
环境依赖性氨基酸可用性和传感决定体液免疫
  • 批准号:
    10436678
  • 财政年份:
    2022
  • 资助金额:
    $ 61.46万
  • 项目类别:
Regulation by mTORC1 of the lysosomal efflux of essential amino acids
mTORC1 对必需氨基酸溶酶体流出的调节
  • 批准号:
    10534130
  • 财政年份:
    2019
  • 资助金额:
    $ 61.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了