Enabling Shaped Pulse Capability for Superior Biological Structural Determination Using EPR Spectroscopy.

使用 EPR 光谱法实现整形脉冲功能以实现卓越的生物结构测定。

基本信息

  • 批准号:
    BB/T017740/1
  • 负责人:
  • 金额:
    $ 44.9万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Biophysical techniques are a powerful way to explore the nature of biological processes and the biological molecules involved. The electron paramagnetic resonance (EPR) spectrometer is capable of extracting exquisitely detailed information about the local atomic environment surrounding atoms within these biological molecules that contain unpaired electrons - we refer to these as radicals or paramagnetic centres. Biological molecules such as proteins may contain natural paramagnetic centres, such as copper or iron, which are often fundamental to how the protein works, or an experimenter may incorporate paramagnetic metals or attach spin labels to specific parts of proteins as a molecular "spy".These molecular spies can be used to measure local dynamics or measure long-range nanometre scale distances in the region to about 10 nm between pairs of paramagnetic centres. This is achieved by measuring the magnetic interaction between these pairs using pulsed EPR, which is analogous to measuring the force between two bar magnets (and is therefore highly dependent on their separation distance). Both distances and distance distributions can be found. Examples of these experiments are double electron electron resonance (DEER) and relaxation-induced dipolar modulation enhancement (RIDME) and collectively the techniques are referred to as pulsed dipolar spectroscopy (PDS).This ability has proved very useful to the study of the structure and interactions of a wide variety of biomacromolecules and has now become a standard tool in biomolecular research. It is also a field which has seen tremendous technical advances over the last 10 years with sensitivity increasing by more than an order of magnitude, which has been transformative. Advances have come from higher frequency and higher power spectrometers, and our previous "state-of-the-art" commercial work-horse "Q-band" spectrometer operates almost continuously. However recent advances in fast digital electronics mean that further significant increases in both sensitivity and sample throughput have become possible. A large part of this comes from the ability to shape the phase, frequency and amplitude of microwave pulses in complex sequences. For many experiments this reduces measurement time 10-fold, dramatically increasing usage and capability for a multi-user, multi-project facility focussed on biological applications. We, and nearly all leading EPR experts, see this technology as the future of the EPR technique for the biosciences. We have a large base of potential users and a wide variety of biological systems that would become interrogatable for the first time. Our investigators, collaborators and partners come from a wide range of national and international institutions. We have an extensive track record in the field and believe this upgrade will substantially increase the UK's capability and reputation in biological EPR. This proposal will ensure sustainability for our centre based at St Andrews/Dundee. The position of our technical and applications manager will be secured for a further three years, and our fifteen-year-old spectrometer will be given a new lease of life. These improvements will allow us to remain internationally competitive and to continue developing and applying the EPR technique to relevant problems across the biosciences.
生物物理技术是探索生物过程和所涉及的生物分子的性质的强有力的方法。电子顺磁共振(EPR)光谱仪能够提取关于这些生物分子中包含未配对电子的原子周围的局部原子环境的详细信息-我们将其称为自由基或顺磁中心。生物分子如蛋白质可能含有天然的顺磁性中心,如铜或铁,这通常是蛋白质如何工作的基础,或者实验者可以将顺磁性金属或自旋标记物附着到蛋白质的特定部分作为分子“间谍”。这些分子间谍可以用于测量局部动力学或测量长-在该区域中,顺磁中心对之间的纳米级距离范围为约10 nm。这是通过使用脉冲EPR测量这些对之间的磁相互作用来实现的,这类似于测量两个条形磁体之间的力(因此高度依赖于它们的分离距离)。这些实验的例子是双电子电子共振(DEER)和弛豫诱导偶极调制增强(RIDME),这些技术统称为脉冲偶极光谱(PDS)这种能力已被证明对研究各种生物大分子的结构和相互作用非常有用,并且现在已成为生物分子生物学中的标准工具。research.这也是一个在过去10年中取得了巨大技术进步的领域,灵敏度提高了一个数量级以上,这是变革性的。更高频率和更高功率的光谱仪带来了进步,我们以前的“最先进”商业主力“Q波段”光谱仪几乎连续工作。然而,快速数字电子学的最新进展意味着灵敏度和样品通量的进一步显着增加已经成为可能。其中很大一部分来自于以复杂序列塑造微波脉冲的相位、频率和振幅的能力。对于许多实验来说,这将测量时间缩短了10倍,大大提高了专注于生物应用的多用户,多项目设施的使用率和能力。我们和几乎所有领先的EPR专家都将这项技术视为生物科学EPR技术的未来。我们有大量的潜在用户和各种各样的生物系统,这些系统将首次成为可询问的。我们的研究人员,合作者和合作伙伴来自广泛的国家和国际机构。我们在该领域有着广泛的跟踪记录,相信这次升级将大大提高英国在生物EPR方面的能力和声誉。该提案将确保我们位于圣安德鲁斯/邓迪的中心的可持续性。我们的技术和应用经理的职位将在未来三年内得到保障,我们十五年的光谱仪将获得新的生命。这些改进将使我们能够保持国际竞争力,并继续开发和应用EPR技术,以解决整个生物科学的相关问题。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Comparison of Cysteine-Conjugated Nitroxide Spin Labels for Pulse Dipolar EPR Spectroscopy.
脉冲偶极EPR光谱法的半胱氨酸偶联的氮氧化物自旋标记的比较。
  • DOI:
    10.3390/molecules26247534
  • 发表时间:
    2021-12-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ackermann K;Chapman A;Bode BE
  • 通讯作者:
    Bode BE
Investigating Native Metal Ion Binding Sites in Mammalian Histidine-Rich Glycoprotein
研究哺乳动物富含组氨酸的糖蛋白中的天然金属离子结合位点
  • DOI:
    10.26434/chemrxiv-2023-f6n6p
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ackermann K
  • 通讯作者:
    Ackermann K
A Low-Spin CoII/Nitroxide Complex for Distance Measurements at Q-Band Frequencies
  • DOI:
    10.3390/magnetochemistry8040043
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    A. Giannoulis;D. Cordes;A. Slawin;B. Bode
  • 通讯作者:
    A. Giannoulis;D. Cordes;A. Slawin;B. Bode
Investigating Native Metal Ion Binding Sites in Mammalian Histidine-Rich Glycoprotein.
研究富含哺乳动物组氨酸的糖蛋白的天然金属离子结合位点。
  • DOI:
    10.1021/jacs.3c00587
  • 发表时间:
    2023-04-12
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Ackermann, Katrin;Khazaipoul, Siavash;Wort, Joshua L.;Sobczak, Amelie I. S.;El Mkami, Hassane;Stewart, Alan J.;Bode, Bela E.
  • 通讯作者:
    Bode, Bela E.
Activation of Csm6 ribonuclease by cyclic nucleotide binding: in an emergency, twist to open.
  • DOI:
    10.1093/nar/gkad739
  • 发表时间:
    2023-10-27
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Janet Lovett其他文献

Janet Lovett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Janet Lovett', 18)}}的其他基金

New strategies for spin labelling cysteine-rich proteins.
自旋标记富含半胱氨酸的蛋白质的新策略。
  • 批准号:
    EP/L022044/1
  • 财政年份:
    2014
  • 资助金额:
    $ 44.9万
  • 项目类别:
    Research Grant

相似国自然基金

转录因子U-shaped和Lozenge对家蚕血细胞发生与免疫调控机理研究
  • 批准号:
    31802142
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Application of molecular alignment technique with an intense shaped laser pulse to rotational coherence molecular laser isotope separation
强整形激光脉冲分子排列技术在旋转相干分子激光同位素分离中的应用
  • 批准号:
    26289367
  • 财政年份:
    2014
  • 资助金额:
    $ 44.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of physical mechanism at the collision point of counter-propagating pulse-shaped spatial solitons
反向传播脉冲形空间孤子碰撞点物理机制分析
  • 批准号:
    24560055
  • 财政年份:
    2012
  • 资助金额:
    $ 44.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Efficient, robust and selective excitation of quantum wavepackets by shaped femtosecond laser pulse sequences
通过成形飞秒激光脉冲序列高效、稳健和选择性地激发量子波包
  • 批准号:
    378832-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 44.9万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Efficient, robust and selective excitation of quantum wavepackets by shaped femtosecond laser pulse sequences
通过成形飞秒激光脉冲序列高效、稳健和选择性地激发量子波包
  • 批准号:
    378832-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 44.9万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of pulse-shaped PCF light sources for CARS microscopic spectroscopy
开发用于 CARS 显微光谱的脉冲形 PCF 光源
  • 批准号:
    20560037
  • 财政年份:
    2008
  • 资助金额:
    $ 44.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Highly selective pump-dump imaging with a shaped femtosecond pulse train
使用成形飞秒脉冲序列进行高选择性泵浦转储成像
  • 批准号:
    20760037
  • 财政年份:
    2008
  • 资助金额:
    $ 44.9万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
An arbitrarily shaped microwave source for ultra wideband radio communication using femtosecond laser pulse shaping
使用飞秒激光脉冲整形用于超宽带无线电通信的任意形状微波源
  • 批准号:
    17360168
  • 财政年份:
    2005
  • 资助金额:
    $ 44.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Multipulse and Shaped Pulse Methods for the Study of Solids,Liquids and Liquid Crystals
用于研究固体、液体和液晶的多脉冲和整形脉冲方法
  • 批准号:
    9021654
  • 财政年份:
    1991
  • 资助金额:
    $ 44.9万
  • 项目类别:
    Continuing Grant
Shaped Pulse Rotary Percussion Drilling
异型脉冲旋转冲击钻
  • 批准号:
    7720655
  • 财政年份:
    1977
  • 资助金额:
    $ 44.9万
  • 项目类别:
    Standard Grant
Shaped-Pulse Rotary Percussion Drilling
成形脉冲旋转冲击钻
  • 批准号:
    7516367
  • 财政年份:
    1976
  • 资助金额:
    $ 44.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了