Multiphoton fluorescence lifetime imaging: Enlightening cellular and deep tissue dynamics and mechanics.
多光子荧光寿命成像:启发细胞和深层组织动力学和力学。
基本信息
- 批准号:BB/T018070/1
- 负责人:
- 金额:$ 65.86万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Microscopy gives us an opportunity to observe, record and study a dimension beyond the limits of our eyesight. The latest advances in microscopy means that you can watch life occurring within bacteria, plants and entire organisms such as mice the way one would watch a movie. Often this is done in biology using the principle of fluorescence. Fluorescence occurs when light, in the form of photons, are absorbed by natural occurring or synthetic chemical compounds in the and re-emitted with light of a longer wavelength. The most common usage of fluorescence in imaging biological samples occurs when the absorbed radiation is in the ultraviolet region of the spectrum, and thus invisible to the human eye, while the emitted light is in the visible region, which gives the fluorescent substance a distinct colour and can be captured using a camera. So, to image biological processes live, we often attach fluorescent molecules attached to proteins or bits of DNA that are of interest which is then excited by a high energy laser. In live microscopy, as with our hand-held cameras and phone cameras, the important part is to get the best quality images with the maximum speed. This also often means that we want to have the ability to remove out-of-focus areas to get the best picture and this remains true for imaging biological samples. Limitations exist with many fluorescence microscopy techniques when imaging thick biological samples,because it is hard to focus a laser beam on a single point deep in a tissue and collect all the emitted light thus providing a good signal-to-noise ratio. New microscopy techniques are now available which can both image very deep into the tissue and restrict the imaging to a single point of focus, which means we can get sub-cellular resolution without having stray light making the image blurry. Two-photon microscopy is one such technique which can allow imaging in very dense and thick samples where the images are generated by using two photons to excite fluorescent molecules, rather than a single photon resulting in high signal-to-noise ratio. We propose to use this technique to study process such as cell movement, cell-cell communication and sub cellular processes such as transport of cargo within the cell and physical responses of cells and tissues such as changes to their stiffness and tension. Thus, this technology will support exciting research which fits into several strategic priority areas for BBSRC and contribute to existing BBSRC projects, and planned BBSRC submissions.
显微镜使我们有机会观察、记录和研究超出我们视力极限的维度。显微镜的最新进展意味着你可以像看电影一样观察细菌、植物和整个生物体(如老鼠)中的生命。在生物学中,这通常是利用荧光原理来完成的。当光以光子的形式被天然存在的或合成的化学化合物吸收并以较长波长的光重新发射时,就会发生荧光。当吸收的辐射在光谱的紫外区域中并且因此对人眼不可见,而发射的光在可见区域中时,荧光在成像生物样品中的最常见使用发生,这给予荧光物质独特的颜色并且可以使用相机捕获。因此,为了对生物过程进行实时成像,我们通常将荧光分子附着在感兴趣的蛋白质或DNA片段上,然后用高能激光激发。在实时显微镜中,与我们的手持相机和手机相机一样,重要的是以最快的速度获得最佳质量的图像。这通常也意味着我们希望能够去除失焦区域以获得最佳图像,这对于生物样本成像仍然适用。当成像厚的生物样品时,许多荧光显微镜技术存在局限性,因为很难将激光束聚焦在组织深处的单个点上并收集所有发射的光,从而提供良好的信噪比。新的显微镜技术现在可以使用,它既可以深入组织成像,又可以将成像限制在单个焦点上,这意味着我们可以获得亚细胞分辨率,而不会有杂散光使图像模糊。双光子显微镜就是这样一种技术,它可以在非常密集和厚的样品中成像,其中图像是通过使用两个光子激发荧光分子而不是单个光子产生的,从而产生高信噪比。我们建议使用这种技术来研究过程,如细胞运动,细胞间通讯和亚细胞过程,如细胞内货物的运输和细胞和组织的物理反应,如它们的刚度和张力的变化。因此,这项技术将支持符合BBSRC几个战略优先领域的令人兴奋的研究,并为现有的BBSRC项目和计划的BBSRC提交做出贡献。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A multi-tiered mechanical mechanism shapes the early neural plate
多层机械机制塑造早期神经板
- DOI:10.1101/2023.06.21.545965
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Inman A
- 通讯作者:Inman A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aparna Ratheesh其他文献
Doing cell biology in embryos: regulated membrane traffic and its implications for cadherin biology
在胚胎中进行细胞生物学:调节膜运输及其对钙粘蛋白生物学的影响
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Aparna Ratheesh;A. Yap - 通讯作者:
A. Yap
A bigger picture: classical cadherins and the dynamic actin cytoskeleton
大局观:经典钙黏着蛋白与动态肌动蛋白细胞骨架
- DOI:
10.1038/nrm3431 - 发表时间:
2012-08-30 - 期刊:
- 影响因子:90.200
- 作者:
Aparna Ratheesh;Alpha S. Yap - 通讯作者:
Alpha S. Yap
Advanced algorithm for polyp detection using depth segmentation in colon endoscopy
在结肠内窥镜检查中使用深度分割进行息肉检测的先进算法
- DOI:
10.1109/csn.2016.7824010 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Aparna Ratheesh;Pooja Soman;M. Nair;R. Devika;R. P. Aneesh - 通讯作者:
R. P. Aneesh
Aparna Ratheesh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aparna Ratheesh', 18)}}的其他基金
Squeezing through the embryo:Dissecting nuclear mechanics during embryonic cell migration
挤压胚胎:剖析胚胎细胞迁移过程中的核力学
- 批准号:
BB/W017482/1 - 财政年份:2023
- 资助金额:
$ 65.86万 - 项目类别:
Research Grant
相似国自然基金
亚纳米单分子定位技术研究化学修饰对蛋白-膜相互作用的干预
- 批准号:91753104
- 批准年份:2017
- 资助金额:70.0 万元
- 项目类别:重大研究计划
“后编码”荧光微/纳米颗粒探针制备及分析应用研究
- 批准号:20745004
- 批准年份:2007
- 资助金额:8.0 万元
- 项目类别:专项基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing a fluorescence lifetime-based GTP biosensor for investigating cellular energy metabolism
开发基于荧光寿命的 GTP 生物传感器来研究细胞能量代谢
- 批准号:
24K17780 - 财政年份:2024
- 资助金额:
$ 65.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Confocal laser scanning microscope with fast fluorescence lifetime imaging module
具有快速荧光寿命成像模块的共焦激光扫描显微镜
- 批准号:
540803833 - 财政年份:2024
- 资助金额:
$ 65.86万 - 项目类别:
Major Research Instrumentation
AI enhanced lifetime-based mesoscopic in vivo imaging of tissue molecular heterogeneity
人工智能增强了基于寿命的组织分子异质性细观体内成像
- 批准号:
10585510 - 财政年份:2023
- 资助金额:
$ 65.86万 - 项目类别:
Changes in the Ionic Basis of GABAergic Inhibition that Contribute to Post-traumatic Epilepsy
导致创伤后癫痫的 GABA 能抑制离子基础的变化
- 批准号:
10713240 - 财政年份:2023
- 资助金额:
$ 65.86万 - 项目类别:
Illuminating multiplexed RNA dynamics to interrogate splicing in health and disease
阐明多重 RNA 动力学以探究健康和疾病中的剪接
- 批准号:
10713923 - 财政年份:2023
- 资助金额:
$ 65.86万 - 项目类别:
Fast Multi-Functional 3D Imaging of Cellular Activities in Deep Tissue
深层组织细胞活动的快速多功能 3D 成像
- 批准号:
10861526 - 财政年份:2023
- 资助金额:
$ 65.86万 - 项目类别:
Label-free, live-cell classification of neural stem cell activation state and dynamics
神经干细胞激活状态和动力学的无标记活细胞分类
- 批准号:
10863309 - 财政年份:2023
- 资助金额:
$ 65.86万 - 项目类别:
Rapid imaging of single-photon and fluorescence lifetime in living tissue
活体组织中单光子和荧光寿命的快速成像
- 批准号:
2886684 - 财政年份:2023
- 资助金额:
$ 65.86万 - 项目类别:
Studentship
Structural energetics of voltage- and ligand-dependent gating in ion channels
离子通道中电压和配体依赖性门控的结构能量学
- 批准号:
10549486 - 财政年份:2023
- 资助金额:
$ 65.86万 - 项目类别:
Fluorescence lifetime-based tumor contrast enhancement using exogenous probes
使用外源探针进行基于荧光寿命的肿瘤对比度增强
- 批准号:
10775262 - 财政年份:2023
- 资助金额:
$ 65.86万 - 项目类别: