Modulation of antibiotic resistance and protein synthesis by disrupting Elongation Factor G dynamics

通过破坏伸长因子 G 动力学来调节抗生素耐药性和蛋白质合成

基本信息

  • 批准号:
    BB/V000837/1
  • 负责人:
  • 金额:
    $ 61.37万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Antibiotic resistance is a serious public health concern; the Chief Medical Officer for England warned it poses a 'catastrophic threat' on a par with climate change or terrorism and deaths related to antibiotic resistance are predicted to outnumber those from cancer by 2050. Without concerted efforts, we face a future in which routinely treatable infections may become fatal due to a lack of effective antibiotic treatments. As few new antibiotics are becoming available it is important to overcome resistance to existing antibiotics to extend the usefulness of these important treatments. To do this we must understand how the proteins involved mediate resistance. This work aims to understand the mechanism of resistance to an important clinical antibiotic, fusidic acid (FA), and identify key regions of the proteins involved that control how they act. This could provide resources for the development of drugs to overcome this resistance and rejuvenate the usefulness of this important antibiotic.FA is used against infections by the bacteria Staphylococcus aureus and is one of few remaining oral antibiotics active against the hospital 'superbug' MRSA. FA interacts with a protein called EF-G (an important part of the machinery for making proteins) and prevents it from working, meaning bacteria cannot make proteins and so cannot grow. Resistance to FA has increased dramatically in recent years either by the interaction of another protein, FusB, with EF-G that rescues it from the effects of FA, or mutations in EF-G itself. The interaction between FusB and EF-G has recently been studied, showing FusB causes long-range changes in EF-G that produce motions in EF-G important for causing FA resistance. I have new data showing that I can disrupt these motions by altering EF-G and that when I do, the proteins become less resistant to FA. I aim to determine which parts of EF-G are important in controlling these motions to try to find key areas of EF-G that could act as targets for the development of drugs that can stop FA resistance and so extend the usefulness of this antibiotic. I will make a series of changes to EF-G and monitor the effects of those changes using structural investigations of motions in EF-G by a technique called nuclear magnetic resonance (NMR). I will then study what effects these changes have on the ability of FusB to cause FA resistance, identifying important areas of EF-G that control its response to FusB. I will use knowledge of these important areas to see if changing them in EF-G that is already resistant to FA without needing FusB can prevent it from producing FA resistance too, suggesting any areas that might control both types of resistance. To complement this, I will study whether similar motions in EF-G are important in the function of EF-G in making proteins within bacteria to try to get a better understanding of how this protein works. This could provide further information for drug discovery studies to try to stop this essential protein from working, providing a potential target for antibiotic development studies. These studies will allow us to understand how bacteria become resistant to this important antibiotic, providing information that can be used to design new antibiotic treatments to bypass this resistance. They also help us to understand the role of EF-G in the essential process of making proteins, which may show more potential drug targets for development of new antibiotics.With the increase in antibiotic resistance and few new antibiotics being discovered, it is important to use knowledge of current resistance mechanisms to develop drugs that bypass resistance or to design drugs that can be added to antibiotics to overcome the resistance. Understanding the structural basis of antibiotic resistance can lead to the development of such drugs that can be administered with the antibiotic to overcome the existing resistance, allowing us to continue to use the antibiotic to treat infections.
抗生素耐药性是一个严重的公共卫生问题;英国首席医疗官警告说,这将构成与气候变化或恐怖主义一样的“灾难性威胁”,预计到2050年,与抗生素耐药性相关的死亡人数将超过癌症死亡人数。如果没有协调一致的努力,我们将面临一个常规可治疗的感染可能因缺乏有效的抗生素治疗而致命的未来。由于可获得的新抗生素很少,因此克服对现有抗生素的耐药性以扩大这些重要治疗的有效性是很重要的。要做到这一点,我们必须了解所涉及的蛋白质如何介导抗性。这项工作旨在了解对一种重要的临床抗生素氟西地酸(FA)的耐药性机制,并确定控制其作用的关键蛋白质区域。这可以为开发药物提供资源,以克服这种耐药性,并恢复这种重要抗生素的有效性。FA用于抵抗金黄色葡萄球菌的感染,是为数不多的对医院“超级细菌”MRSA有活性的口服抗生素之一。FA与一种名为EF-G的蛋白质(制造蛋白质的重要组成部分)相互作用,并阻止其发挥作用,这意味着细菌无法制造蛋白质,因此无法生长。近年来,由于另一种蛋白质FusB与EF-G相互作用使其免受FA的影响,或者EF-G本身发生突变,对FA的耐药性急剧增加。最近研究了FusB和EF-G之间的相互作用,表明FusB引起EF-G的长期变化,从而在EF-G中产生运动,这对引起FA抵抗很重要。我有新的数据表明,我可以通过改变EF-G来破坏这些运动,当我这样做时,蛋白质对FA的抵抗力就会降低。我的目标是确定EF-G的哪些部分在控制这些运动中是重要的,并试图找到EF-G的关键区域,这些区域可以作为开发可以阻止FA耐药性的药物的目标,从而延长这种抗生素的有效性。我将对EF-G进行一系列改变,并利用核磁共振(NMR)技术对EF-G的运动进行结构调查,监测这些变化的影响。然后,我将研究这些变化对FusB引起FA抗性的能力的影响,确定EF-G控制其对FusB反应的重要区域。我将利用这些重要领域的知识,看看在不需要FusB的情况下,在已经耐FA的EF-G中改变它们是否也能防止它产生FA抗性,并建议任何可能控制这两种抗性的领域。为了补充这一点,我将研究EF-G中类似的运动是否对EF-G在细菌内制造蛋白质的功能很重要,以试图更好地了解这种蛋白质是如何工作的。这可以为药物发现研究提供进一步的信息,以试图阻止这种必需蛋白质的工作,为抗生素开发研究提供潜在的靶点。这些研究将使我们了解细菌如何对这种重要的抗生素产生耐药性,并提供可用于设计新的抗生素治疗方法以绕过这种耐药性的信息。它们还有助于我们了解EF-G在蛋白质生成过程中的作用,这可能为开发新的抗生素提供更多潜在的药物靶点。随着抗生素耐药性的增加和新发现的抗生素很少,利用现有耐药性机制的知识来开发绕过耐药性的药物或设计可以添加到抗生素中以克服耐药性的药物是很重要的。了解抗生素耐药性的结构基础可以开发出与抗生素一起使用的药物,以克服现有的耐药性,使我们能够继续使用抗生素治疗感染。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Tomlinson其他文献

Old norms in the new normal: Exploring and resisting the rise of the ideal pandemic worker
新常态中的旧规范:探索与抵制理想疫情工作者的崛起
  • DOI:
    10.1111/gwao.13071
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Frederike Scholz;Liz Oliver;Jennifer Tomlinson;Robert MacKenzie;Jo Ingold
  • 通讯作者:
    Jo Ingold

Jennifer Tomlinson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

水环境中新兴污染物类抗生素效应(Like-Antibiotic Effects,L-AE)作用机制研究
  • 批准号:
    21477024
  • 批准年份:
    2014
  • 资助金额:
    86.0 万元
  • 项目类别:
    面上项目

相似海外基金

Modulation of in vivo MAIT cell responses with diverse MR1 ligands
用不同的 MR1 配体调节体内 MAIT 细胞反应
  • 批准号:
    10626969
  • 财政年份:
    2022
  • 资助金额:
    $ 61.37万
  • 项目类别:
Context-specific modulation of Clostridioides difficile virulence by Vancomycin-resistant Enterococcus faecium
耐万古霉素屎肠球菌对艰难梭菌毒力的特定调节
  • 批准号:
    10629341
  • 财政年份:
    2022
  • 资助金额:
    $ 61.37万
  • 项目类别:
Context-specific modulation of Clostridioides difficile virulence by Vancomycin-resistant Enterococcus faecium
耐万古霉素屎肠球菌对艰难梭菌毒力的特定调节
  • 批准号:
    10511292
  • 财政年份:
    2022
  • 资助金额:
    $ 61.37万
  • 项目类别:
Modulation of in vivo MAIT cell responses with diverse MR1 ligands
用不同的 MR1 配体调节体内 MAIT 细胞反应
  • 批准号:
    10512001
  • 财政年份:
    2022
  • 资助金额:
    $ 61.37万
  • 项目类别:
Modulation of Bacterial Cell Division by (p)ppGpp
(p)ppGpp 对细菌细胞分裂的调节
  • 批准号:
    10315737
  • 财政年份:
    2021
  • 资助金额:
    $ 61.37万
  • 项目类别:
Modulation of Bacterial Cell Division by (p)ppGpp
(p)ppGpp 对细菌细胞分裂的调节
  • 批准号:
    10458524
  • 财政年份:
    2021
  • 资助金额:
    $ 61.37万
  • 项目类别:
Modulation of Bacterial Cell Division by (p)ppGpp
(p)ppGpp 对细菌细胞分裂的调节
  • 批准号:
    10668410
  • 财政年份:
    2021
  • 资助金额:
    $ 61.37万
  • 项目类别:
Modulation of inflammation in aging lung
调节衰老肺部的炎症
  • 批准号:
    9901002
  • 财政年份:
    2020
  • 资助金额:
    $ 61.37万
  • 项目类别:
Modulation of inflammation in aging lung
调节衰老肺部的炎症
  • 批准号:
    10112958
  • 财政年份:
    2020
  • 资助金额:
    $ 61.37万
  • 项目类别:
Modulation of inflammation in aging lung
调节衰老肺部的炎症
  • 批准号:
    10329996
  • 财政年份:
    2020
  • 资助金额:
    $ 61.37万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了