Clathrin assembly regulation of glucose metabolism

网格蛋白组装调节葡萄糖代谢

基本信息

  • 批准号:
    BB/V001221/1
  • 负责人:
  • 金额:
    $ 66.33万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Organs and tissues are made up of cells that must be able to respond to their environment in order to carry out many tasks, including regulating growth, fighting infection and controlling nutrition. A critical step in nutritional regulation is the ability to maintain blood sugar levels after eating. The body does this by moving a protein called GLUT4 in fat and muscle cells from within the cell to the cell's surface in response to insulin, which is released when blood sugar levels are high. GLUT4 acts to shuttle glucose (the form of sugar in the blood) into the cell, thereby reducing blood sugar levels. As such, in a fasting state, GLUT4 is retained inside the cell to prevent blood sugar levels becoming dangerously low, but is moved to the cell surface in response to the insulin released after you eat to prevent blood sugar levels becoming dangerously high. The GLUT4 is then moved back inside the cell when blood sugar levels have returned to normal. Disruption of this ability to control blood sugar levels can lead to diabetes. Key to controlling blood sugar levels, therefore, is the ability to move GLUT4 from its specialised storage site to the cell surface in response to insulin, and then remove it from the cell surface after enough glucose has been removed from the blood. For this, a protein called clathrin is critical. Named for its clathrate (lattice-like) structure, clathrin acts to ensure that a huge range of proteins are in the right place in the cell at any time. Multiple molecules of clathrin self-assemble into basket-like coats that form and wrap around 'vesicles' that pinch off from membranes and are then transported to another part of the cell, in a mechanism known as 'membrane trafficking'. There are two forms of clathrin. The originally discovered form, referred to as CHC17, is best known for a stage in membrane traffic called 'endocytosis', the process by which proteins are moved from the cell surface to the interior of the cell. More recently, a second form of clathrin, CHC22, has been identified and been shown to be involved in a separate process. Instead of functioning at the cell surface, CHC22 operates entirely within the cell to move GLUT4 to its storage compartment, from where it is able to respond to insulin. Therefore, both forms of clathrin are critical to ensure that GLUT4 is trafficked properly in response to changing blood sugar levels. Recently, it has been discovered that humans have evolved two different forms of CHC22, and these two variants change how individuals are able to respond to blood glucose levels.A key step in understanding clathrin function is to understand how clathrin self-assembles into coats. Here, two laboratories that have studied clathrin biology for many years are joined by two other experts in analysing the structures and interactions of proteins to answer this question. Thanks to exciting recent advances in the structural knowledge of clathrin led by one of the investigators collaborating here, detailed structures of CHC17 assemblies, including many key interacting points, are now known for the first time. This work aims to build on this knowledge to compare the contacts that are critical to assemblies of CHC17 and CHC22, and test how these contact points affect assembly rates of both clathrins. The structure of CHC22 assemblies is less well known than that of CHC17. This work aims to rectify that, and will determine the structures of the two major CHC22 variants. We will use this information to investigate how the regulation of clathrin assembly affects GLUT4 trafficking in response to insulin in cells. Therefore, this work will help to understand the mechanisms by which clathrin functions, which could in turn aid in the development of therapeutic strategies to help alter blood glucose clearance, for instance in diabetic patients.
器官和组织是由细胞组成的,细胞必须能够对环境做出反应,才能完成许多任务,包括调节生长、抵抗感染和控制营养。营养调节的关键一步是在进食后维持血糖水平的能力。身体通过将脂肪和肌肉细胞中的一种叫做GLUT4的蛋白质从细胞内部移动到细胞表面来响应胰岛素,当血糖水平高时,胰岛素就会释放出来。GLUT4的作用是将葡萄糖(血液中糖的一种形式)运送到细胞中,从而降低血糖水平。因此,在禁食状态下,GLUT4被保留在细胞内,以防止血糖水平降到危险的低水平,但在你吃东西后释放胰岛素,GLUT4被转移到细胞表面,以防止血糖水平降到危险的高水平。当血糖水平恢复正常时,GLUT4会被移回细胞内。这种控制血糖水平的能力被破坏会导致糖尿病。因此,控制血糖水平的关键是将GLUT4从其专门的储存位置移动到细胞表面以响应胰岛素的能力,然后在足够的葡萄糖从血液中移除后将其从细胞表面移除。为此,一种叫做网格蛋白的蛋白质至关重要。网格蛋白以其笼形(晶格状)结构而命名,其作用是确保大量蛋白质在任何时候都处于细胞中的正确位置。网格蛋白的多个分子自组装成篮状的外壳,形成并包裹在“囊泡”周围,这些囊泡从细胞膜上挤压下来,然后被运送到细胞的另一部分,这种机制被称为“膜运输”。网格蛋白有两种形式。最初发现的形式被称为CHC17,最著名的是在膜交通的一个阶段被称为“内吞作用”,蛋白质从细胞表面移动到细胞内部的过程。最近,第二种形式的网格蛋白CHC22被发现并被证明参与了一个单独的过程。CHC22不是在细胞表面起作用,而是完全在细胞内起作用,将GLUT4移动到它的储存室,从那里它能够对胰岛素作出反应。因此,这两种形式的网格蛋白对于确保GLUT4在血糖水平变化的情况下正常运输至关重要。最近,人们发现人类进化出了两种不同形式的CHC22,这两种变体改变了个体对血糖水平的反应。了解网格蛋白功能的关键一步是了解网格蛋白如何自组装成衣层。在这里,两个研究网格蛋白生物学多年的实验室与另外两位专家一起分析蛋白质的结构和相互作用来回答这个问题。由于其中一位研究人员在网格蛋白结构知识方面取得了令人兴奋的最新进展,CHC17组装体的详细结构,包括许多关键的相互作用点,现在首次为人所知。这项工作旨在建立在这些知识的基础上,比较对CHC17和CHC22组装至关重要的接触点,并测试这些接触点如何影响两种网格蛋白的组装率。与CHC17相比,CHC22的结构鲜为人知。这项工作旨在纠正这一点,并将确定两个主要CHC22变体的结构。我们将利用这些信息来研究网格蛋白组装的调节如何影响GLUT4运输以响应胰岛素在细胞中的作用。因此,这项工作将有助于了解网格蛋白的功能机制,从而有助于开发治疗策略,以帮助改变血糖清除,例如糖尿病患者。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CHC22 clathrin membrane recruitment uses SNX5 in bipartite interaction with secretory tether p115
CHC22 网格蛋白膜募集使用 SNX5 与分泌系链 p115 进行双向相互作用
  • DOI:
    10.1101/2022.12.21.520923
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Greig J
  • 通讯作者:
    Greig J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Frances Martha Brodsky其他文献

Frances Martha Brodsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Frances Martha Brodsky', 18)}}的其他基金

Formation and regulation of the human insulin-responsive intracellular GLUT4 transport pathway
人胰岛素反应性细胞内 GLUT4 转运途径的形成和调节
  • 批准号:
    MR/X018377/1
  • 财政年份:
    2023
  • 资助金额:
    $ 66.33万
  • 项目类别:
    Research Grant
REGULATION OF HUMAN GLUCOSE HOMEOSTASIS BY THE NOVEL CHC22 CLATHRIN ISOFORM
新型 CHC22 网格蛋白异构体对人体葡萄糖稳态的调节
  • 批准号:
    MR/S008144/1
  • 财政年份:
    2019
  • 资助金额:
    $ 66.33万
  • 项目类别:
    Research Grant

相似国自然基金

ENKD1在纺锤体定向中的作用及分子机制
  • 批准号:
    32000490
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
肌球蛋白18B通过影响微丝应力纤维组装调控肿瘤细胞迁移的机制研究
  • 批准号:
    31970660
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
  • 批准号:
    21171046
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
嵌段共聚物多级自组装的多尺度模拟
  • 批准号:
    20974040
  • 批准年份:
    2009
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
早型星系的测光研究
  • 批准号:
    10973011
  • 批准年份:
    2009
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
"锁住"的金属中心手性-手性笼络合物的动态CD光谱研究与应用开发
  • 批准号:
    20973136
  • 批准年份:
    2009
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
功能有机配体新颖设计与有机金属超分子导向组装
  • 批准号:
    20772152
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Clathrin assembly regulation of glucose metabolism
网格蛋白组装调节葡萄糖代谢
  • 批准号:
    BB/V001434/1
  • 财政年份:
    2021
  • 资助金额:
    $ 66.33万
  • 项目类别:
    Research Grant
Actin assembly and clathrin-mediated endocytosis in yeast and mammals
酵母和哺乳动物中肌动蛋白组装和网格蛋白介导的内吞作用
  • 批准号:
    10434883
  • 财政年份:
    2016
  • 资助金额:
    $ 66.33万
  • 项目类别:
Actin assembly and clathrin-mediated endocytosis in yeast and mammals
酵母和哺乳动物中肌动蛋白组装和网格蛋白介导的内吞作用
  • 批准号:
    10166490
  • 财政年份:
    2016
  • 资助金额:
    $ 66.33万
  • 项目类别:
Actin assembly and clathrin-mediated endocytosis in yeast and mammals
酵母和哺乳动物中肌动蛋白组装和网格蛋白介导的内吞作用
  • 批准号:
    10676743
  • 财政年份:
    2016
  • 资助金额:
    $ 66.33万
  • 项目类别:
Actin assembly and clathrin-mediated endocytosis in yeast and mammals
酵母和哺乳动物中肌动蛋白组装和网格蛋白介导的内吞作用
  • 批准号:
    10575884
  • 财政年份:
    2016
  • 资助金额:
    $ 66.33万
  • 项目类别:
Actin assembly and clathrin-mediated endocytosis in yeast and mammals
酵母和哺乳动物中肌动蛋白组装和网格蛋白介导的内吞作用
  • 批准号:
    9071612
  • 财政年份:
    2016
  • 资助金额:
    $ 66.33万
  • 项目类别:
Actin assembly and clathrin-mediated endocytosis in yeast and mammals
酵母和哺乳动物中肌动蛋白组装和网格蛋白介导的内吞作用
  • 批准号:
    9276734
  • 财政年份:
    2016
  • 资助金额:
    $ 66.33万
  • 项目类别:
Actin assembly and clathrin-mediated endocytosis in yeast and mammals
酵母和哺乳动物中肌动蛋白组装和网格蛋白介导的内吞作用
  • 批准号:
    9980927
  • 财政年份:
    2016
  • 资助金额:
    $ 66.33万
  • 项目类别:
Biochemistry and Cell Biology of CHC22 Clathrin
CHC22 网格蛋白的生物化学和细胞生物学
  • 批准号:
    8459867
  • 财政年份:
    2012
  • 资助金额:
    $ 66.33万
  • 项目类别:
Biochemistry and Cell Biology of CHC22 Clathrin
CHC22 网格蛋白的生物化学和细胞生物学
  • 批准号:
    8776204
  • 财政年份:
    2012
  • 资助金额:
    $ 66.33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了