Understanding the mechanisms and significance of the changes in intercellular communication between the non-sensory cells of the ageing cochlea

了解衰老耳蜗非感觉细胞之间细胞间通讯变化的机制和意义

基本信息

  • 批准号:
    BB/V006681/1
  • 负责人:
  • 金额:
    $ 55.81万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

Age-related hearing loss (ARHL) is the most common health condition in the elderly. Approximately half of adults in their 70s exhibit ARHL severe enough to affect communication. It is expected that approximately 14.5M people in the UK will be affected by hearing loss by 2030, with ARHL being the single biggest cause. ARHL is a progressive disorder decreasing the ability to understand speech, especially in a noisy environment. ARHL is also associated with social isolation and depression. Although hearing aids and cochlear implants are beneficial, they cannot restore hearing, especially if the cells in the ear are missing or do not function, which are both characteristic features in ARHL. The major obstacle preventing the development of new treatments for ARHL is a lack of understanding about why we progressively lose our sense of hearing with age, making it difficult to prevent, slow down or even reverse ARHL.Sound is detected by extremely sensitive sensory cells, named hair cells, that are located inside a bony structure called the cochlea in the inner ear. Their name derives from the hair-like elements (stereocilia) that project from their apical surface. When sound enters the ear canal it produces minute vibrations of the stereocilia. These vibrations initiate the conversion of sound waves into an electrical current by the movement of charged ions through mechanically-gated channels present in the hair cell stereocilia; a process known as mechano-electrical transduction. These tiny electrical currents, which are a billion time smaller than the current of a phone charger, are sent to the brain via nerve fibres, allowing us to perceive sound such as speech and music.Similar to the brain, the hair cells work constantly and as such they require a lot of energy, which is provided by molecules such as nutrients, travelling in the body through the blood vessels. One problem, however, is that the hair cells are very far from the blood vessels entering the cochlea. This is because the movement caused by the blood flowing through the vessels would be picked up by the hair cells, leading to a pulsating background noise in our ears. Therefore, nature has developed an intricate network of conduits that bring the nutrients from the blood vessels to the hair cells. This network is formed by a large number of cells, called non-sensory cells, that are present all around the hair cells and the blood vessels. When nutrients, such as glucose, are "released" by the blood vessels, they enter the non-sensory cells and travel from cell-to-cell via specialised channels until they reach the hair cells. These channels, also known as gap-junctions, are made by proteins called connexins. Connexins are vital for hearing since nearly half of all cases of hearing impairment present at birth in humans are due to mutations in these proteins.Our preliminary work has identified age-related changes in the way connexins function and how they are distributed in the non-sensory cells. These changes appear to occur before any degeneration is observed in the hair cells, making the non-sensory cells and connexin gap-junctions potentially key instigators of the deterioration of hearing that occurs with ageing. Therefore, the hypothesis we plan to test in this project is that non-sensory cells are a key determinant of the progression of ARHL. In this project we will use aged mice that show signs of ARHL. Mice are an ideal animal because the structure and function of their auditory system is strikingly similar to that of the human, and also because of the high level of concordance between genes critical for hearing function. This project will provide a better understanding of why and how non-sensory cells lead to the development of ARHL. The outcomes will contribute to the identification of targetable genes that will facilitate the development of diagnostic and therapeutic interventions for ARHL in humans.
老年性听力损失(ARHL)是老年人最常见的健康状况。大约一半的70多岁的成年人表现出严重的ARHL,足以影响交流。预计到2030年,英国将有大约1450万人受到听力损失的影响,ARHL是最大的单一原因。ARHL是一种进行性疾病,会降低理解语言的能力,特别是在嘈杂的环境中。急性淋巴细胞性白血病还与社会孤立和抑郁有关。虽然助听器和人工耳蜗植入物是有益的,但它们不能恢复听力,特别是当耳朵中的细胞缺失或不起作用时,这两个都是ARHL的特征。阻碍ARHL新疗法发展的主要障碍是缺乏对为什么我们随着年龄的增长而逐渐丧失听力的理解,这使得预防、减缓甚至逆转ARHL变得困难。声音是由极其敏感的感觉细胞--称为毛细胞--探测到的,这些细胞位于内耳的一个称为耳蜗骨的骨骼结构中。它们的名字来源于它们顶端表面突出的毛发状元素(立体纤毛)。当声音进入耳道时,它会产生立体声纤毛的微小振动。这些振动通过带电离子在毛细胞立体纤毛中存在的机械门控通道中移动,启动了声波到电流的转换;这一过程被称为机械-电转换。这些微小的电流比手机充电器的电流小10亿倍,通过神经纤维传递到大脑,使我们能够感知语音和音乐等声音。与大脑类似,毛细胞持续工作,因此它们需要大量能量,这些能量由营养等分子提供,通过血管在体内传播。然而,有一个问题是,毛细胞与进入耳蜗的血管相距很远。这是因为流经血管的血液引起的运动会被毛细胞拾取,导致我们耳朵里有脉动的背景噪音。因此,大自然开发了一个复杂的管道网络,将营养从血管输送到毛细胞。这个网络是由大量被称为非感觉细胞的细胞组成的,这些细胞存在于毛细胞和血管周围。当营养物质,如葡萄糖,被血管“释放”时,它们进入非感官细胞,并通过专门的渠道从一个细胞到另一个细胞,直到到达毛细胞。这些通道也被称为缝隙连接,是由一种名为连接蛋白的蛋白质组成的。连接蛋白对听力至关重要,因为在人类出生时存在的所有听力障碍病例中,近一半是由于这些蛋白质的突变造成的。我们的初步工作已经确定了连接蛋白的功能及其在非感觉细胞中的分布随年龄的变化。这些变化似乎在毛细胞发生任何退化之前就发生了,这使得非感觉细胞和连接蛋白缝隙连接可能是随着年龄增长而导致听力恶化的关键因素。因此,我们计划在这个项目中检验的假设是,非感觉细胞是ARHL进展的关键决定因素。在这个项目中,我们将使用表现出急性淋巴细胞性白血病迹象的老年小鼠。老鼠是一种理想的动物,因为它们的听觉系统的结构和功能与人类惊人地相似,也因为对听力功能至关重要的基因之间的高度一致性。这个项目将提供一个更好的理解为什么以及如何非感觉细胞导致急性淋巴细胞性白血病的发展。研究结果将有助于确定靶向基因,从而促进人类急性淋巴细胞性白血病的诊断和治疗干预措施的发展。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Walter Marcotti其他文献

A machine-learning-based approach to predict early hallmarks of progressive hearing loss
一种基于机器学习的方法来预测进行性听力损失的早期特征
  • DOI:
    10.1016/j.heares.2025.109328
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Federico Ceriani;Joshua Giles;Neil J Ingham;Jing-Yi Jeng;Morag A Lewis;Karen P Steel;Mahnaz Arvaneh;Walter Marcotti
  • 通讯作者:
    Walter Marcotti
Comparison of three histochemical methods for assaying lactate dehydrogenase in liver
  • DOI:
    10.1016/s0065-1281(11)80115-7
  • 发表时间:
    1992-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rosanna Nano;Gianluca Civenni;Walter Marcotti
  • 通讯作者:
    Walter Marcotti
In vivo spontaneous Ca2+ activity in the pre-hearing mammalian cochlea
哺乳动物听前耳蜗内的体内自发性钙 2+活性
  • DOI:
    10.1038/s41467-024-55519-w
  • 发表时间:
    2025-01-02
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Francesca De Faveri;Federico Ceriani;Walter Marcotti
  • 通讯作者:
    Walter Marcotti
Absence of Embigin accelerates hearing loss and causes sub-viability, brain and heart defects in C57BL/6N mice due to interaction with emCdh23/emsupemahl/em/sup
由于与 emCdh23/emsupemahl/em/sup 的相互作用,缺乏 Embigin 会加速 C57BL/6N 小鼠的听力损失,并导致其生存能力低下、大脑和心脏缺陷。
  • DOI:
    10.1016/j.isci.2023.108056
  • 发表时间:
    2023-10-20
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Sherylanne Newton;Carlos Aguilar;Rosie K. Bunton-Stasyshyn;Marisa Flook;Michelle Stewart;Walter Marcotti;Steve Brown;Michael R. Bowl
  • 通讯作者:
    Michael R. Bowl

Walter Marcotti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Walter Marcotti', 18)}}的其他基金

Understanding the neural basis of hearing function and dysfunction in vivo.
了解体内听力功能和功能障碍的神经基础。
  • 批准号:
    BB/Y000374/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.81万
  • 项目类别:
    Research Grant
Cholinergic efferent re-wiring of hair cells in the aging cochlea: understanding mechanisms and functional significance
老化耳蜗中毛细胞的胆碱能传出重新布线:了解机制和功能意义
  • 批准号:
    BB/T004991/1
  • 财政年份:
    2020
  • 资助金额:
    $ 55.81万
  • 项目类别:
    Research Grant
Physiological and molecular basis of stereociliary bundle growth and maintenance by the Eps8-like family genes and their interacting partners.
Eps8 样家族基因及其相互作用伙伴的静纤毛束生长和维持的生理和分子基础。
  • 批准号:
    BB/S006257/1
  • 财政年份:
    2019
  • 资助金额:
    $ 55.81万
  • 项目类别:
    Research Grant

相似国自然基金

Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
Erk1/2/CREB/BDNF通路在CSF1R相关性白质脑病致病机制中的作用研究
  • 批准号:
    82371255
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
  • 批准号:
    82370979
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
  • 批准号:
    82370981
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
  • 批准号:
    82370851
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
  • 批准号:
    82372015
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
小脑浦肯野细胞突触异常在特发性震颤中的作用机制及靶向干预研究
  • 批准号:
    82371248
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
  • 批准号:
    82371973
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
  • 批准号:
    82371652
  • 批准年份:
    2023
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目

相似海外基金

Determining Potential Mechanisms of Worse Outcomes in Black HCM Patients
确定黑人 HCM 患者出现更糟糕结果的潜在机制
  • 批准号:
    10717764
  • 财政年份:
    2023
  • 资助金额:
    $ 55.81万
  • 项目类别:
Mechanisms linking the frail sarcomere to noncompaction cardiomyopathy
脆弱肌节与非致密化心肌病的相关机制
  • 批准号:
    10643016
  • 财政年份:
    2023
  • 资助金额:
    $ 55.81万
  • 项目类别:
Mechanisms of Action of Natural Genetic Variation
自然遗传变异的作用机制
  • 批准号:
    10587460
  • 财政年份:
    2023
  • 资助金额:
    $ 55.81万
  • 项目类别:
Investigation of the mechanisms underlying nuclear compartment reorganization and its significance in inflammatory responses
研究核区室重组的机制及其在炎症反应中的意义
  • 批准号:
    23K18203
  • 财政年份:
    2023
  • 资助金额:
    $ 55.81万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Mechanisms and significance of programmed cell death in hypothalamic CRH neurons
下丘脑CRH神经元程序性细胞死亡的机制及意义
  • 批准号:
    10566449
  • 财政年份:
    2023
  • 资助金额:
    $ 55.81万
  • 项目类别:
Nitrous oxide production by salt marsh sediment fungi: its significance and mechanisms
盐沼沉积物真菌产生一氧化二氮的意义和机制
  • 批准号:
    2303089
  • 财政年份:
    2023
  • 资助金额:
    $ 55.81万
  • 项目类别:
    Continuing Grant
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
  • 批准号:
    23K05594
  • 财政年份:
    2023
  • 资助金额:
    $ 55.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pathogenic mechanisms of myosin binding protein C missense variants within hypertrophic cardiomyopathy
肥厚型心肌病中肌球蛋白结合蛋白C错义变异的致病机制
  • 批准号:
    10610423
  • 财政年份:
    2022
  • 资助金额:
    $ 55.81万
  • 项目类别:
Investigating the molecular mechanisms of right ventricular failure in pulmonary hypertension
肺动脉高压右心衰竭的分子机制研究
  • 批准号:
    10523022
  • 财政年份:
    2022
  • 资助金额:
    $ 55.81万
  • 项目类别:
Dissecting the mechanisms of how MYH7 S2 mutations lead to genetic hypertrophic cardiomyopathy
剖析MYH7 S2突变导致遗传性肥厚型心肌病的机制
  • 批准号:
    10463127
  • 财政年份:
    2022
  • 资助金额:
    $ 55.81万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了