Understanding the neural basis of hearing function and dysfunction in vivo.
了解体内听力功能和功能障碍的神经基础。
基本信息
- 批准号:BB/Y000374/1
- 负责人:
- 金额:$ 59.3万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The auditory system is key to our daily life, as it allows us to perceive sound in all of its different forms, from noises to speech and music. The sensitivity and dynamic range of this sense are remarkable, allowing us to detect sounds from as quiet as a pin drop to as loud as an explosion or an airplane taking off. It is also key for survival in many animal species, since sounds can be detected from anywhere around the body and the speed of processing sound information is unparalleled among sensory systems (this is the reason why time-critical sports such as sprint races start with a gunshot and not, for example, with a flash of light).Sound is detected by extremely sensitive sensory cells named hair cells that are located in the inner ear. The function of these cells is critical for our ability to extract information from acoustic stimuli. How does the brain develop this ability? How does the brain adapt when hair cells become dysfunctional, for example after damage? These are critical questions in our quest to understand how the brain works, as well as to understand the physiological basis of hearing disorders.The aim of this proposal is to elucidate how the complexity of the auditory system is refined during development and to determine how the activity of the peripheral sensory cells shapes the responses in the brain that underlie the processing of auditory information.Achieving this task is technically prohibitive in mammals, due to the large size and complexity of the brain and the inaccessibility of the sensory hair cells for in vivo investigation. Therefore, for this study, we propose to use a smaller vertebrate, the zebrafish. This fish is among the so called "hearing specialists", having developed a sense of hearing that works in a broadly similar way to that of mammals. This includes the use of sensory hair cells, located within the inner ear, that convert acoustic stimuli into neural signals by a process known as mechanoelectrical transduction, which also occurs in mammals. In recent years, the zebrafish has provided invaluable information towards our understanding of the genetic basis of hearing and deafness. Crucial to this proposal, the small brain size (~1 mm diameter) and transparency of the zebrafish, make it possible to observe the entire brain under a microscope, while resolving the sound-induced activity of individual cells thanks to genetically encoded fluorescent reporter dyes. These benefits, when combined with the accessibility for behavioural analysis, make the zebrafish an ideal model organism to identify the mechanisms underlying the formation of nerve circuits and sensory integration in vivo. We will use zebrafish lines which express the fluorescent reporter dyes in hair cells and neurons. These molecules increase their brightness when hair cells and auditory neurons are stimulated by sound, allowing us to monitor in real time how sound is processed from the ear to the brain. We will combine this with zebrafish lines in which will disrupt the activity of the peripheral hair cells, either by silencing them using a technique called optogenetics or by damaging them with loud noise. This will allow us to understand how hair cells influence the encoding of auditory responses in the brain and how this change when hair cells become damaged. In the long term, the information obtained with this work could be used to better understand the mechanisms underlying pathological changes in the auditory system, such as noise induced hearing loss.
听觉系统是我们日常生活的关键,因为它允许我们感知所有不同形式的声音,从噪音到语音和音乐。这种感觉的灵敏度和动态范围是显著的,使我们能够检测到从像针掉下来一样安静到像爆炸或飞机起飞一样响亮的声音。它也是许多动物物种生存的关键,因为声音可以从身体周围的任何地方被检测到,并且处理声音信息的速度在感觉系统中是无与伦比的(这就是为什么时间紧迫的运动,如短跑比赛,以枪声开始,而不是,例如,闪光)。声音由位于内耳的极其敏感的感觉细胞检测,称为毛细胞。这些细胞的功能对于我们从声音刺激中提取信息的能力至关重要。大脑是如何发展这种能力的?当毛细胞功能失调时,例如损伤后,大脑如何适应?这些都是我们探索大脑如何工作的关键问题,以及理解听力障碍的生理基础。这项建议的目的是阐明听觉系统的复杂性是如何在发育过程中得到改善的,并确定外周感觉细胞的活动如何塑造大脑中作为听觉信息处理基础的反应。实现这一任务在技术上是不可能的在哺乳动物中,由于大脑的大尺寸和复杂性以及感觉毛细胞无法用于体内研究。因此,在这项研究中,我们建议使用较小的脊椎动物,斑马鱼。这种鱼是所谓的“听觉专家”之一,已经发展出一种与哺乳动物大致相似的听觉。这包括使用位于内耳内的感觉毛细胞,其通过称为机械电转导的过程将声学刺激转化为神经信号,该过程也发生在哺乳动物中。近年来,斑马鱼为我们理解听力和耳聋的遗传基础提供了宝贵的信息。对于这一提议至关重要的是,斑马鱼的小大脑尺寸(直径约为1 mm)和透明度使得在显微镜下观察整个大脑成为可能,同时由于遗传编码的荧光报告染料,可以解析单个细胞的声音诱导活动。这些好处,当与行为分析的可访问性相结合时,使斑马鱼成为一种理想的模式生物,以确定体内神经回路和感觉整合形成的机制。我们将使用在毛细胞和神经元中表达荧光报告染料的斑马鱼系。当毛细胞和听觉神经元受到声音刺激时,这些分子会增加它们的亮度,使我们能够在真实的时间内监测声音是如何从耳朵传递到大脑的。我们将联合收割机与斑马鱼细胞系相结合,在斑马鱼细胞系中,我们将破坏外周毛细胞的活动,通过使用一种称为光遗传学的技术使它们沉默,或者通过大声噪音破坏它们。这将使我们能够了解毛细胞如何影响大脑中听觉反应的编码,以及当毛细胞受损时这种变化如何。从长远来看,这项工作所获得的信息可以用来更好地了解听觉系统病理变化的机制,如噪声引起的听力损失。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Walter Marcotti其他文献
A machine-learning-based approach to predict early hallmarks of progressive hearing loss
一种基于机器学习的方法来预测进行性听力损失的早期特征
- DOI:
10.1016/j.heares.2025.109328 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:2.500
- 作者:
Federico Ceriani;Joshua Giles;Neil J Ingham;Jing-Yi Jeng;Morag A Lewis;Karen P Steel;Mahnaz Arvaneh;Walter Marcotti - 通讯作者:
Walter Marcotti
Comparison of three histochemical methods for assaying lactate dehydrogenase in liver
- DOI:
10.1016/s0065-1281(11)80115-7 - 发表时间:
1992-12-01 - 期刊:
- 影响因子:
- 作者:
Rosanna Nano;Gianluca Civenni;Walter Marcotti - 通讯作者:
Walter Marcotti
In vivo spontaneous Ca2+ activity in the pre-hearing mammalian cochlea
哺乳动物听前耳蜗内的体内自发性钙 2+活性
- DOI:
10.1038/s41467-024-55519-w - 发表时间:
2025-01-02 - 期刊:
- 影响因子:15.700
- 作者:
Francesca De Faveri;Federico Ceriani;Walter Marcotti - 通讯作者:
Walter Marcotti
Absence of Embigin accelerates hearing loss and causes sub-viability, brain and heart defects in C57BL/6N mice due to interaction with emCdh23/emsupemahl/em/sup
由于与 emCdh23/emsupemahl/em/sup 的相互作用,缺乏 Embigin 会加速 C57BL/6N 小鼠的听力损失,并导致其生存能力低下、大脑和心脏缺陷。
- DOI:
10.1016/j.isci.2023.108056 - 发表时间:
2023-10-20 - 期刊:
- 影响因子:4.100
- 作者:
Sherylanne Newton;Carlos Aguilar;Rosie K. Bunton-Stasyshyn;Marisa Flook;Michelle Stewart;Walter Marcotti;Steve Brown;Michael R. Bowl - 通讯作者:
Michael R. Bowl
Walter Marcotti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Walter Marcotti', 18)}}的其他基金
Understanding the mechanisms and significance of the changes in intercellular communication between the non-sensory cells of the ageing cochlea
了解衰老耳蜗非感觉细胞之间细胞间通讯变化的机制和意义
- 批准号:
BB/V006681/1 - 财政年份:2021
- 资助金额:
$ 59.3万 - 项目类别:
Research Grant
Cholinergic efferent re-wiring of hair cells in the aging cochlea: understanding mechanisms and functional significance
老化耳蜗中毛细胞的胆碱能传出重新布线:了解机制和功能意义
- 批准号:
BB/T004991/1 - 财政年份:2020
- 资助金额:
$ 59.3万 - 项目类别:
Research Grant
Physiological and molecular basis of stereociliary bundle growth and maintenance by the Eps8-like family genes and their interacting partners.
Eps8 样家族基因及其相互作用伙伴的静纤毛束生长和维持的生理和分子基础。
- 批准号:
BB/S006257/1 - 财政年份:2019
- 资助金额:
$ 59.3万 - 项目类别:
Research Grant
相似国自然基金
脐带间充质干细胞微囊联合低能量冲击波治疗神经损伤性ED的机制研究
- 批准号:82371631
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
亚低温调控颅脑创伤急性期神经干细胞Mpc2/Lactate/H3K9lac通路促进神经修复的研究
- 批准号:82371379
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
基于再生运动神经路径优化Agrin作用促进损伤神经靶向投射的功能研究
- 批准号:82371373
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Neural Process模型的多样化高保真技术研究
- 批准号:62306326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
- 批准号:82371973
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
生理/病理应激差异化调控肝再生的“蓝斑—中缝”神经环路机制
- 批准号:82371517
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
LIPUS响应的弹性石墨烯多孔导管促进神经再生及其机制研究
- 批准号:82370933
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
弓状核介导慢性疼痛引起动机下降的神经环路机制及rTMS干预研究
- 批准号:82371536
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
听觉刺激特异性调控情绪的神经环路机制研究
- 批准号:82371516
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
TAG1/APP信号通路调控的miRNA及其在神经前体细胞增殖和分化中的作用机制
- 批准号:31171313
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Understanding the neural basis of motor development in early childhood
了解幼儿期运动发育的神经基础
- 批准号:
RGPIN-2019-05702 - 财政年份:2022
- 资助金额:
$ 59.3万 - 项目类别:
Discovery Grants Program - Individual
Understanding the neural basis of motor development in early childhood
了解幼儿期运动发育的神经基础
- 批准号:
RGPIN-2019-05702 - 财政年份:2021
- 资助金额:
$ 59.3万 - 项目类别:
Discovery Grants Program - Individual
Understanding the neural basis of gaze behaviour in the human brain.
了解人脑凝视行为的神经基础。
- 批准号:
FT200100843 - 财政年份:2021
- 资助金额:
$ 59.3万 - 项目类别:
ARC Future Fellowships
Understanding the neural basis of social attachment
了解社会依恋的神经基础
- 批准号:
10249294 - 财政年份:2020
- 资助金额:
$ 59.3万 - 项目类别:
Understanding the neural basis of perception of movements
了解运动感知的神经基础
- 批准号:
20K16479 - 财政年份:2020
- 资助金额:
$ 59.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Understanding the neural basis of social attachment
了解社会依恋的神经基础
- 批准号:
10417233 - 财政年份:2020
- 资助金额:
$ 59.3万 - 项目类别:
Understanding the neural basis of social attachment
了解社会依恋的神经基础
- 批准号:
10599715 - 财政年份:2020
- 资助金额:
$ 59.3万 - 项目类别:
Understanding the neural basis of social attachment
了解社会依恋的神经基础
- 批准号:
10623287 - 财政年份:2020
- 资助金额:
$ 59.3万 - 项目类别:
Understanding the neural basis of motor development in early childhood
了解幼儿期运动发育的神经基础
- 批准号:
RGPIN-2019-05702 - 财政年份:2020
- 资助金额:
$ 59.3万 - 项目类别:
Discovery Grants Program - Individual
Understanding the neural basis of social attachment
了解社会依恋的神经基础
- 批准号:
10037364 - 财政年份:2020
- 资助金额:
$ 59.3万 - 项目类别: