The role of the human transcription factor ZFP64 in centromeric transcription and maintenance of genomic stability
人类转录因子ZFP64在着丝粒转录和维持基因组稳定性中的作用
基本信息
- 批准号:BB/V009605/1
- 负责人:
- 金额:$ 55.22万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Our bodies are comprised of 30 billion cells. As our body grows, and regenerates tissues due to injury, normal wear-and-tear and aging, these cells must multiply at rapid rates - with millions of new cells born every minute in our bodies! Each time a cell duplicates its content, including its copy of the genome, it undergoes a process termed cell division that physically separates the cell contents into two halves that become the future daughter cells. Any mistakes that occur in the precise separation of the two new genomes can lead to dramatic and potentially cancer-causing genetic mutations, or cell death. As a result, cell division is carefully regulated by many control mechanisms. The genome is arranged into 22 pairs of chromosomes that, once copied, are plucked apart by internal cell structures to form the genome of the new cells. During this process (mitosis), chromosomes are captured by the cell via specialised structures called centromeres. Most of the genome is relentlessly read and 'transcribed' by proteins that create an RNA copy of short sections - usually as a precursor to producing proteins from the genes encoded in our DNA. Centromeres were thought to be excluded from this process but over the last several years it was surprisingly discovered that transcription of centromeres is essential to accurate cell division.This crucially important and evolutionarily-conserved process has been difficult to study because of two major hurdles; First, it is not known which exact DNA sequences undergo transcription. Second, the specific proteins (transcription factors) that perform this role at the centromere are not known. Recently, our laboratory has identified a transcription factor named ZFP64 as a potential centromeric transcription factor. We used imaging to track the position of this factor within human cells, and excitingly see it at centromeres. Importantly, when we specifically remove this protein from cells we see a decrease in the amount of centromeric transcription. We have also discovered the possible mechanism by which centromeric transcription is controlled throughout the lifetime of each cell - another elusive phenomenon in humans. Therefore, we are now poised to take advantage of recent technological advances that will improve our ability to discover which DNA sequences at the centromere are transcribed, and to ask which of those are controlled by ZFP64. Our laboratory is expert in imaging and manipulating human cells and we have assembled a focussed and feasible set of experiments that will allow us to definitively test whether ZFP64 indeed represents the first human centromeric transcription factor. Together with expert collaborators within our research institute and worldwide, we will perform both standard experiments and also newly emerging strategies for discovering which DNA sequences are transcribed. By investigating the detailed mechanisms of this new and important potential centromeric transcription factor, we will make a large step towards full understanding of this phenomenon in humans, and exactly why it is so crucial for accurate cell division.
我们的身体由300亿个细胞组成。随着我们身体的生长,由于受伤,正常的磨损和衰老而再生组织,这些细胞必须以快速的速度繁殖-每分钟都有数百万个新细胞在我们体内诞生!每次细胞复制其内容物,包括其基因组拷贝时,它都会经历一个称为细胞分裂的过程,该过程将细胞内容物物理分离成两半,成为未来的子细胞。在两个新基因组的精确分离中发生的任何错误都可能导致戏剧性的和潜在的致癌基因突变或细胞死亡。因此,细胞分裂受到许多控制机制的精心调控。基因组被排列成22对染色体,一旦被复制,就会被内部细胞结构分开,形成新细胞的基因组。在这个过程(有丝分裂)中,染色体通过称为着丝粒的特殊结构被细胞捕获。基因组的大部分都被蛋白质无情地读取和“转录”,这些蛋白质产生了一个短片段的RNA拷贝--通常是从我们DNA中编码的基因中产生蛋白质的前体。着丝粒被认为是排除在这一过程之外的,但在过去的几年里,人们惊讶地发现,着丝粒的转录对精确的细胞分裂是必不可少的。这一至关重要的和进化上保守的过程一直很难研究,因为有两个主要的障碍:首先,不知道确切的DNA序列进行转录。第二,在着丝粒处起这种作用的特定蛋白质(转录因子)尚不清楚。最近,我们实验室鉴定了一个名为ZFP 64的转录因子作为潜在的着丝粒转录因子。我们使用成像技术来追踪这种因子在人类细胞中的位置,并令人兴奋地看到它在着丝粒上。重要的是,当我们从细胞中特异性地去除这种蛋白质时,我们看到着丝粒转录的量减少。我们还发现了在每个细胞的整个生命周期中控制着丝粒转录的可能机制-这是人类中另一种难以捉摸的现象。因此,我们现在准备利用最新的技术进步,这将提高我们发现着丝粒上哪些DNA序列被转录的能力,并询问哪些DNA序列由ZFP 64控制。我们的实验室是成像和操纵人类细胞的专家,我们已经组装了一组集中和可行的实验,这将使我们能够明确测试ZFP 64是否确实代表第一个人类着丝粒转录因子。与我们研究所和世界各地的专家合作者一起,我们将进行标准实验和新出现的策略,以发现哪些DNA序列被转录。通过研究这种新的和重要的潜在的着丝粒转录因子的详细机制,我们将朝着充分理解人类的这种现象迈出一大步,以及为什么它对准确的细胞分裂如此重要。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Replication stress generates distinctive landscapes of DNA copy number alterations and chromosome scale losses.
- DOI:10.1186/s13059-022-02781-0
- 发表时间:2022-10-20
- 期刊:
- 影响因子:12.3
- 作者:
- 通讯作者:
Additional file 5 of Replication stress generates distinctive landscapes of DNA copy number alterations and chromosome scale losses
复制压力的附加文件 5 会产生 DNA 拷贝数改变和染色体规模损失的独特景观
- DOI:10.6084/m9.figshare.21376248
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Shaikh N
- 通讯作者:Shaikh N
Targeted assembly of ectopic kinetochores to induce chromosome-specific segmental aneuploidies.
- DOI:10.15252/embj.2022111587
- 发表时间:2023-05-15
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Inducing Specific Chromosome Mis-Segregation in Human Cells
诱导人体细胞中的特定染色体错误分离
- DOI:10.1101/2022.04.19.486691
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Tovini L
- 通讯作者:Tovini L
Additional file 1 of Replication stress generates distinctive landscapes of DNA copy number alterations and chromosome scale losses
复制压力的附加文件 1 会产生 DNA 拷贝数改变和染色体规模损失的独特景观
- DOI:10.6084/m9.figshare.21376236
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Shaikh N
- 通讯作者:Shaikh N
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah McClelland其他文献
Allele-Specific Expression of Leukemia Genes Is Associated with Pathogenicity in Poor Risk AML
- DOI:
10.1182/blood-2023-184516 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Jiexin Zheng;Findlay Bewicke-Copley;Carlo Vermeulen;Pedro Casado;Fadimana Kaya;Jonas Demeulemeester;Molly Guscott;Szilvia Krizsán;Sam Benkwitz-Bedford;Farideh Miraki-Moud;Janet Matthews;Marianne Grantham;Doriana Di Bella;John G. Gribben;James Cavenagh;Peter Van Loo;Sarah McClelland;Csaba Bödör;Jean-Baptiste Cazier;David Taussig - 通讯作者:
David Taussig
SorLA modulates atheroprotective properties of CLA by regulating monocyte migration.
SorLA 通过调节单核细胞迁移来调节 CLA 的动脉粥样硬化特性。
- DOI:
10.1016/j.atherosclerosis.2010.09.025 - 发表时间:
2010 - 期刊:
- 影响因子:5.3
- 作者:
C. McCarthy;P. O'Gaora;W. James;M. de Gaetano;Sarah McClelland;D. Fitzgerald;O. Belton - 通讯作者:
O. Belton
Novel, Monomeric Cyanine Dyes as Reporters for DNA Helicase Activity
新型单体花青染料作为 DNA 解旋酶活性的报告基因
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:2.7
- 作者:
Cuiling Xu;M. Losytskyy;V. Kovalska;D. V. Kryvorotenko;S. Yarmoluk;Sarah McClelland;P. Bianco - 通讯作者:
P. Bianco
Cyclooxygenase inhibition in atherothrombotic disease
动脉粥样硬化血栓性疾病中的环加氧酶抑制
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
O. Belton;Sarah McClelland;D. Fitzgerald - 通讯作者:
D. Fitzgerald
Sarah McClelland的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
靶向Human ZAG蛋白的降糖小分子化合物筛选以及疗效观察
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
新型小分子蛋白—人肝细胞生长因子三环域(hHGFK1)抑制破骨细胞及治疗小鼠骨质疏松的疗效评估与机制研究
- 批准号:82370885
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
HBV S-Human ESPL1融合基因在慢性乙型肝炎发病进程中的分子机制研究
- 批准号:81960115
- 批准年份:2019
- 资助金额:34.0 万元
- 项目类别:地区科学基金项目
HPV导致子宫颈上皮-间充质细胞转化的研究
- 批准号:81101974
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
普适计算环境下基于交互迁移与协作的智能人机交互研究
- 批准号:61003219
- 批准年份:2010
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
DARC在基底细胞样乳腺癌中作用机制的研究
- 批准号:81001172
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于自适应表面肌电模型的下肢康复机器人“Human-in-Loop”控制研究
- 批准号:61005070
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
子宫颈癌中HPV E6对hTERT基因调控的研究
- 批准号:81001157
- 批准年份:2010
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
人真皮多潜能成纤维细胞向胰岛素分泌细胞分化的体外及体内研究
- 批准号:30800231
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
细胞内受体TLR9、NOD1和NOD2在不可分型流感嗜血杆菌肺组织感染中的作用
- 批准号:30670929
- 批准年份:2006
- 资助金额:27.0 万元
- 项目类别:面上项目
相似海外基金
Role of Frizzled 5 in NK cell development and antiviral host immunity
Frizzled 5 在 NK 细胞发育和抗病毒宿主免疫中的作用
- 批准号:
10748776 - 财政年份:2024
- 资助金额:
$ 55.22万 - 项目类别:
Gain-of-function toxicity in alpha-1 antitrypsin deficient type 2 alveolar epithelial cells
α-1 抗胰蛋白酶缺陷型 2 型肺泡上皮细胞的功能获得毒性
- 批准号:
10751760 - 财政年份:2024
- 资助金额:
$ 55.22万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 55.22万 - 项目类别:
Phosphodiesterase 4B Inhibition as a Therapeutic Target for Alcohol-associated Liver Disease
磷酸二酯酶 4B 抑制作为酒精相关性肝病的治疗靶点
- 批准号:
10354185 - 财政年份:2023
- 资助金额:
$ 55.22万 - 项目类别:
In vivo calcium imaging during appetitive learning in HIV Tat transgenic mice exposed to cannabis
暴露于大麻的 HIV Tat 转基因小鼠食欲学习过程中的体内钙成像
- 批准号:
10696442 - 财政年份:2023
- 资助金额:
$ 55.22万 - 项目类别:
Investigation of UBQLN2 in neuronal dysfunction and ALS-FTD
UBQLN2 在神经元功能障碍和 ALS-FTD 中的研究
- 批准号:
10638277 - 财政年份:2023
- 资助金额:
$ 55.22万 - 项目类别:
Integrated Molecular and Cellular Drivers of Alveologenesis
肺泡发生的综合分子和细胞驱动因素
- 批准号:
10637764 - 财政年份:2023
- 资助金额:
$ 55.22万 - 项目类别:
The role and mechanism of RNA m6A modification in the pathogenesis and drug-resistance of prostate cancer
RNA m6A修饰在前列腺癌发病及耐药中的作用及机制
- 批准号:
10638634 - 财政年份:2023
- 资助金额:
$ 55.22万 - 项目类别:
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 55.22万 - 项目类别:














{{item.name}}会员




