FUNCLAN - FUNctional annotations through Conformational Landscape Analysis

FUNCLAN - 通过构象景观分析进行功能注释

基本信息

  • 批准号:
    BB/V016113/1
  • 负责人:
  • 金额:
    $ 51.33万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

The dynamic nature of proteins leading to multiple conformational states is critical in many biological processes from forming macromolecular complexes with other proteins, small molecules (ligands) or nucleic acids to switching between active and inactive forms for enzymatic activity. To gain improved mechanistic insights into the function of proteins, structural characterisation of their three-dimensional (3D) structures and their conformational states is critical. Knowledge of the transition between different energetically favoured conformational states is fundamental to the understanding of the principles of protein structure and evolution and can help in explaining the effects of genetic variants, in designing new drug molecules and in elucidating drug resistance at the molecular level.Although the PDB has archived more than 165,000 individual structures, the number of unique proteins based on the number of UniProt accession cross-references grows at a slower pace and totals only ~50,000, with a considerable variation in the redundancy rate amongst different sequences. This is because each protein may have multiple representatives in the PDB: ligand-bound and unbound forms; structures in multiple space groups or sample conditions; in complex with other macromolecules (proteins or nucleic acid) or structures determined of smaller domains or sequence variants. Thus, the structures in the PDB provide a valuable resource for understanding the conformational flexibility of ligand binding sites, individual protein molecules as well as large macromolecular machines. Understanding the similarities and differences in ligand binding sites, individual protein molecules and the large macromolecular complexes using the ensemble of available structures can assist in deciphering the molecular level details of macromolecular function. The availability of data on distinct conformational states will also assist in characterising the particles in whole-cell tomograms, thus allowing molecular phenotyping of whole cells in different disease or development states.In this project we will enhance GESAMT, the structure comparison algorithm, to derive conformational flexibility of ligand binding sites, individual proteins or domains and macromolecular assemblies. The new framework, FUNCLAN, will include the necessary metrics to realise meaningful clustering and the necessary scheme to describe the structural similarities and differences between members of different clusters. Each cluster will have a representative structure and using the structural and functional annotations from PDBe-KB, we will characterise each cluster and provide biological context. The new functionality will be validated against a dataset of known examples from the literature of macromolecules and complexes exhibiting specific conformational states. A pipeline for a PDB archive-wide clustering of ligand binding sites, individual macromolecules and macromolecular complexes will be implemented. The resulting data will be made available programmatically via a REST API, an FTP site, and also via a novel web-based application.
导致多种构象状态的蛋白质的动态性质在许多生物过程中至关重要,从与其他蛋白质、小分子(配体)或核酸形成大分子复合物到在活性和非活性形式之间切换以实现酶活性。为了更好地了解蛋白质的功能,其三维 (3D) 结构及其构象状态的结构表征至关重要。了解不同能量有利构象状态之间的转变对于理解蛋白质结构和进化原理至关重要,并且有助于解释遗传变异的影响、设计新药物分子以及阐明分子水平的耐药性。尽管 PDB 已存档超过 165,000 个单独的结构,但基于 UniProt 登录交叉引用的数量,独特蛋白质的数量仍在增长 速度较慢,总数只有~50,000,不同序列之间的冗余率差异很大。这是因为每种蛋白质在PDB中可能有多种代表:配体结合和非结合形式;多个空间群或样本条件下的结构;与其他大分子(蛋白质或核酸)或由较小结构域或序列变体确定的结构复合。因此,PDB 中的结构为理解配体结合位点、单个蛋白质分子以及大型大分子机器的构象灵活性提供了宝贵的资源。使用可用结构的集合来了解配体结合位点、单个蛋白质分子和大分子复合物的相似性和差异可以帮助破译大分子功能的分子水平细节。不同构象状态数据的可用性也将有助于表征全细胞断层扫描中的颗粒,从而允许对不同疾病或发育状态下的全细胞进行分子表型分析。在该项目中,我们将增强GESAMT(结构比较算法),以推导配体结合位点、单个蛋白质或结构域以及大分子组装体的构象灵活性。新框架FUNCLAN将包括实现有意义的聚类所需的指标以及描述不同聚类成员之间结构相似性和差异的必要方案。每个簇将具有代表性结构,并使用 PDBe-KB 的结构和功能注释,我们将描述每个簇的特征并提供生物学背景。新功能将根据表现出特定构象状态的大分子和复合物文献中的已知示例数据集进行验证。将实施配体结合位点、单个大分子和大分子复合物的 PDB 档案范围聚类的管道。生成的数据将通过 REST API、FTP 站点以及基于网络的新型应用程序以编程方式提供。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PDBe and PDBe-KB: Providing high-quality, up-to-date and integrated resources of macromolecular structures to support basic and applied research and education.
  • DOI:
    10.1002/pro.4439
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Varadi, Mihaly;Anyango, Stephen;Appasamy, Sri Devan;Armstrong, David;Bage, Marcus;Berrisford, John;Choudhary, Preeti;Bertoni, Damian;Deshpande, Mandar;Leines, Grisell Diaz;Ellaway, Joseph;Evans, Genevieve;Gaborova, Romana;Gupta, Deepti;Gutmanas, Aleksandras;Harrus, Deborah;Kleywegt, Gerard J.;Bueno, Weslley Morellato;Nadzirin, Nurul;Nair, Sreenath;Pravda, Lukas;Afonso, Marcelo Querino Lima;Sehnal, David;Tanweer, Ahsan;Tolchard, James;Abrams, Charlotte;Dunlop, Roisin;Velankar, Sameer
  • 通讯作者:
    Velankar, Sameer
Automated Pipeline for Comparing Protein Conformational States in the PDB to AlphaFold2 Predictions
用于将 PDB 中的蛋白质构象状态与 AlphaFold2 预测进行比较的自动化流程
  • DOI:
    10.1101/2023.07.13.545008
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ellaway J
  • 通讯作者:
    Ellaway J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sameer Velankar其他文献

Interactive 3D Macromolecular Structure Data Mining with MolQL and Litemol Suite
  • DOI:
    10.1016/j.bpj.2017.11.308
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    David Sehnal;Mandar Deshpande;Alexander Rose;Lukas Pravda;Adam Midlik;Radka Svobodová Vařeková;Saqib Mir;Karel Berka;Sameer Velankar;Jaroslav Koca
  • 通讯作者:
    Jaroslav Koca

Sameer Velankar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sameer Velankar', 18)}}的其他基金

BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y000455/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Research Grant
20-BBSRC/NSF-BIO: From atoms to molecules to cells - Multi-scale tools and infrastructure for visualization of annotated 3D structure data
20-BBSRC/NSF-BIO:从原子到分子到细胞 - 用于注释 3D 结构数据可视化的多尺度工具和基础设施
  • 批准号:
    BB/W017970/1
  • 财政年份:
    2023
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Research Grant
CIBR 19-BBSRC-NSF/BIO: Next generation PDB - FACT infrastructure with value added FAIR data supporting diverse research and education user communities
CIBR 19-BBSRC-NSF/BIO:下一代 PDB - FACT 基础设施,具有增值 FAIR 数据,支持多样化的研究和教育用户社区
  • 批准号:
    BB/V004247/1
  • 财政年份:
    2021
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Research Grant
BioChemGRAPH - an integrated knowledge graph to facilitate basic and translational research
BioChemGRAPH - 促进基础和转化研究的综合知识图
  • 批准号:
    BB/T01959X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Research Grant
Increasing the Coverage and Accuracy of CATH for Comparative Genomics and Variant Interpretation
提高比较基因组学和变异解释的 CATH 的覆盖范围和准确性
  • 批准号:
    BB/R015201/1
  • 财政年份:
    2019
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Research Grant
3D-Gateway to protein structure and function
蛋白质结构和功能的 3D 门户
  • 批准号:
    BB/S020071/1
  • 财政年份:
    2019
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Research Grant
BBSRC-NSF/BIO - Expanding fold library in the twilight zone to facilitate structure determination of macromolecular machines
BBSRC-NSF/BIO - 扩展暮光区的折叠库以促进大分子机器的结构测定
  • 批准号:
    BB/S017135/1
  • 财政年份:
    2019
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Research Grant
FunPDBe - enhancing structural and functional annotation of macromolecular structure data in the PDB by collaboration and integration
FunPDBe - 通过协作和集成增强 PDB 中大分子结构数据的结构和功能注释
  • 批准号:
    BB/P024351/1
  • 财政年份:
    2017
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Research Grant
India partnering award: Sustainable data archiving and dissemination strategy to support data driven biology
印度合作奖:支持数据驱动生物学的可持续数据归档和传播战略
  • 批准号:
    BB/P025846/1
  • 财政年份:
    2017
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Research Grant
PDBHarvest - Harvesting more and better metadata from CCP4 projects to enrich structure depositions to the PDB
PDBHarvest - 从 CCP4 项目中收获更多更好的元数据,以丰富 PDB 的结构沉积
  • 批准号:
    BB/M020428/1
  • 财政年份:
    2015
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Research Grant

相似国自然基金

高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
  • 批准号:
    30771013
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

FUNCLAN - FUNctional annotations through Conformational Landscape Analysis
FUNCLAN - 通过构象景观分析进行功能注释
  • 批准号:
    BB/V015591/1
  • 财政年份:
    2022
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Research Grant
FunPDBe - Community driven enrichment of PDB data with structural and functional annotations
FunPDBe - 社区驱动的 PDB 数据丰富与结构和功能注释
  • 批准号:
    BB/P023959/1
  • 财政年份:
    2019
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Research Grant
Computational approaches for functional annotations of non-coding sequences in immune disease
免疫疾病中非编码序列功能注释的计算方法
  • 批准号:
    9397451
  • 财政年份:
    2017
  • 资助金额:
    $ 51.33万
  • 项目类别:
FunPDBe - Community driven enrichment of PDB data with structural and functional annotations
FunPDBe - 社区驱动的 PDB 数据丰富与结构和功能注释
  • 批准号:
    BB/P023940/1
  • 财政年份:
    2017
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Research Grant
Exploiting High Performance Computing to Provide Functional Annotations via CATH-Gene3D
利用高性能计算通过 CATH-Gene3D 提供功能注释
  • 批准号:
    BB/H02364X/1
  • 财政年份:
    2010
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Research Grant
Functional and Comparative Annotations
功能和比较注释
  • 批准号:
    7353878
  • 财政年份:
    2006
  • 资助金额:
    $ 51.33万
  • 项目类别:
Functional Annotations for the Pneumocystis Genome.
肺孢子虫基因组的功能注释。
  • 批准号:
    6696106
  • 财政年份:
    2003
  • 资助金额:
    $ 51.33万
  • 项目类别:
Functional Annotations for the Pneumocystis Genome.
肺孢子虫基因组的功能注释。
  • 批准号:
    6782669
  • 财政年份:
    2003
  • 资助金额:
    $ 51.33万
  • 项目类别:
Implementation of a Functional Programming Language with Annotations to Control Run-Time Behavior
使用注释控制运行时行为的函数式编程语言的实现
  • 批准号:
    8514946
  • 财政年份:
    1986
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Standard Grant
Implementation of a Functional Programming Language with Annotations to Control Run-Time Behavior
使用注释控制运行时行为的函数式编程语言的实现
  • 批准号:
    8796167
  • 财政年份:
    1986
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了