Membrane protein targeting and assembly in cyanobacteria
蓝细菌中的膜蛋白靶向和组装
基本信息
- 批准号:BB/W001012/1
- 负责人:
- 金额:$ 58.16万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Cyanobacteria are photosynthetic bacteria that play a crucial role in the ecology of the planet, and are also promising vehicles for solar-powered biotechnology. Cyanobacteria have a more complex cell structure than most other bacteria: they have an intricate internal membrane system called the thylakoid membranes. The thylakoids are packed with protein complexes involved in photosynthesis and respiration. By contrast, the plasma membrane surrounding the cell is dedicated to other functions and very different sets of proteins are found in the two membrane systems. Although we know which proteins are found in which membrane, we don't know where they are integrated into each membrane, and we don't know what sends them there. We have gained clues to both questions from an approach using fluorescence microscopy to find the locations of specific mRNA molecules that encode thylakoid membrane proteins. We used a technique called RNA-FISH in which we chemically fix the cells and then probe them with short synthetic sequences of DNA linked to fluorescent molecules. The DNA probes bind to the target mRNA in the cell, and we can then observe their location within the cell. Using this technique we have shown that the mRNA molecules that code for core components of the photosynthetic apparatus cluster at very specific locations at the parts of the thylakoid membrane surface that are nearest to the central part of the cell where the DNA is found. We have evidence that these locations correspond to "translation zones" where the photosynthetic proteins are first produced and integrated into the thylakoid membrane, and we also have evidence that the mRNA molecules are directed to the thylakoid membrane by interaction with specific mRNA-binding proteins. Interactions of this sort may be crucial for targeting membrane proteins to the correct membrane. The mRNA-binding proteins that we identified are strongly conserved in different species of cyanobacteria, and they even have homologs in plant chloroplasts. This suggests that elements of an mRNA targeting system have been conserved over more than a billion years of evolution from a free-living cyanobacterium to a chloroplast within a plant cell.In this proposal, we will carry out further RNA-FISH to studies to find the locations of a wider range of mRNA species in cyanobacteria. We will test whether different thylakoid membrane proteins are translated at the same zones, or whether each protein has its own specific translation zone. We will test whether the newly-produced photosynthetic complexes stay at the translation zones, or whether they migrate elsewhere in the membrane for further assembly. We will also check the location of mRNAs encoding plasma membrane proteins to see if there are comparable translation zones at the plasma membrane. We will examine the organisation of the thylakoid membrane translation zones using a technique called atomic force microscopy, which can tell us how individual protein complexes are arranged in the membrane. We expect this to give us new insights into the elaborate and co-ordinated process by which photosynthetic complexes are assembled. We will test for the involvement of further RNA-binding proteins in targeting mRNA molecules to the thylakoid and the plasma membranes, and we will look for features of the mRNA molecules that may be recognised by each of the RNA-binding proteins. We will then test our ideas by producing cells with mutated mRNA sequences that we expect to change the association with the protein and the location of the mRNA in the cell. We expect this part of the project to tell us how cyanobacterial cells are able to target specific proteins to a specific membrane, laying the foundations for methods for "precision engineering" of cyanobacteria for solar-powered biotechnology.
蓝细菌是光合细菌,在地球生态中发挥着至关重要的作用,也是太阳能生物技术的有前途的载体。蓝细菌的细胞结构比大多数其他细菌都要复杂:它们有一个复杂的内部膜系统,称为类囊体膜。类囊体中充满了参与光合作用和呼吸作用的蛋白质复合物。相比之下,细胞周围的质膜致力于其他功能,并且在两种膜系统中发现了非常不同的蛋白质组。虽然我们知道哪些蛋白质存在于哪种膜中,但我们不知道它们整合到每个膜的哪里,也不知道是什么把它们送到那里的。我们已经获得了线索,这两个问题的方法,使用荧光显微镜找到特定的mRNA分子编码的类囊体膜蛋白的位置。我们使用了一种叫做RNA-FISH的技术,我们用化学方法固定细胞,然后用连接到荧光分子上的短合成DNA序列来探测它们。DNA探针与细胞中的靶mRNA结合,然后我们可以观察它们在细胞内的位置。利用这种技术,我们已经表明,编码光合机构核心成分的mRNA分子聚集在类囊体膜表面的非常特定的位置,这些位置最接近发现DNA的细胞中心部分。我们有证据表明,这些位置对应于“翻译区”,光合蛋白首先在那里产生并整合到类囊体膜上,我们也有证据表明,mRNA分子通过与特定的mRNA结合蛋白相互作用而定向于类囊体膜。这种相互作用对于将膜蛋白定位到正确的膜上可能是至关重要的。我们鉴定的mRNA结合蛋白在不同种类的蓝藻中高度保守,它们甚至在植物叶绿体中也有同源物。这表明mRNA靶向系统的元件在从自由生活的蓝藻到植物细胞内的叶绿体的十多亿年的进化中已经被保守。在这个提议中,我们将进行进一步的RNA-FISH研究,以找到更广泛的mRNA种类在蓝藻中的位置。我们将测试不同的类囊体膜蛋白是否在相同的区域翻译,或者每个蛋白质是否有自己的特定翻译区。我们将测试新产生的光合复合物是否停留在翻译区,或者它们是否迁移到膜的其他地方进行进一步组装。我们还将检查编码质膜蛋白的mRNA的位置,以查看质膜上是否存在可比较的翻译区。我们将使用一种称为原子力显微镜的技术来检查类囊体膜翻译区的组织,该技术可以告诉我们单个蛋白质复合物如何在膜中排列。我们希望这能让我们对光合复合物的组装过程有新的认识。我们将测试参与进一步的RNA结合蛋白在靶向mRNA分子的类囊体和质膜,我们将寻找的mRNA分子的功能,可以识别的每个RNA结合蛋白。然后,我们将通过生产具有突变mRNA序列的细胞来测试我们的想法,我们希望改变与蛋白质的关联以及mRNA在细胞中的位置。我们希望该项目的这一部分能够告诉我们蓝藻细胞如何能够将特定蛋白质靶向特定的膜,为太阳能生物技术的蓝藻“精确工程”方法奠定基础。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Locations of membrane protein production in a cyanobacterium.
- DOI:10.1128/jb.00209-23
- 发表时间:2023-10-26
- 期刊:
- 影响因子:3.2
- 作者:Mahbub, Moontaha;Mullineaux, Conrad W.
- 通讯作者:Mullineaux, Conrad W.
Cryo-EM structure of a monomeric RC-LH1-PufX supercomplex with high-carotenoid content from Rhodobacter capsulatus
- DOI:10.1016/j.str.2023.01.006
- 发表时间:2023-03-02
- 期刊:
- 影响因子:5.7
- 作者:Bracun, Laura;Yamagata, Atsushi;Liu, Lu-Ning
- 通讯作者:Liu, Lu-Ning
Making the connections: physical and electric interactions in biohybrid photosynthetic systems.
- DOI:10.1039/d3ee01265d
- 发表时间:2023-10-11
- 期刊:
- 影响因子:32.5
- 作者:Yang, Ying;Liu, Lu-Ning;Tian, Haining;Cooper, Andrew I.;Sprick, Reiner Sebastian
- 通讯作者:Sprick, Reiner Sebastian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Conrad Mullineaux其他文献
Conrad Mullineaux的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Conrad Mullineaux', 18)}}的其他基金
A confocal microscope for multidisciplinary dynamic studies of complex biological systems
用于复杂生物系统多学科动态研究的共焦显微镜
- 批准号:
BB/W019698/1 - 财政年份:2022
- 资助金额:
$ 58.16万 - 项目类别:
Research Grant
Organisation, dynamics and biogenesis of a photosynthetic membrane
光合膜的组织、动力学和生物发生
- 批准号:
BB/R00370X/1 - 财政年份:2018
- 资助金额:
$ 58.16万 - 项目类别:
Research Grant
Micro-optics and photosynthetic light-trapping in cyanobacteria
蓝藻的微光学和光合光捕获
- 批准号:
BB/P001807/1 - 财政年份:2017
- 资助金额:
$ 58.16万 - 项目类别:
Research Grant
Role of phosphorylation in the maintenance of photosystem II in plants
磷酸化在维持植物光系统 II 中的作用
- 批准号:
BB/N017145/1 - 财政年份:2016
- 资助金额:
$ 58.16万 - 项目类别:
Research Grant
Spatial dynamics of electron transport
电子传输的空间动力学
- 批准号:
BB/J016985/1 - 财政年份:2012
- 资助金额:
$ 58.16万 - 项目类别:
Research Grant
Molecular mechanism of intracellular membrane biogenesis in Synechocystis sp. PCC6803
集胞藻细胞内膜生物发生的分子机制。
- 批准号:
BB/G021856/1 - 财政年份:2009
- 资助金额:
$ 58.16万 - 项目类别:
Research Grant
Protein dynamics in Escherichia coli
大肠杆菌中的蛋白质动力学
- 批准号:
BB/E009751/1 - 财政年份:2007
- 资助金额:
$ 58.16万 - 项目类别:
Research Grant
相似国自然基金
子宫内膜间质与巨噬细胞之间通过Protein S-MerTK-Apelin信号对
话促进子宫腺肌病蜕膜化缺陷的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
有翅与无翅蚜虫差异分泌唾液蛋白Cuticular protein在调控植物细胞壁免疫中的功能
- 批准号:32372636
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
原发性开角型青光眼中SIPA1L1促进小梁网细胞外基质蛋白累积升高眼压的作用机制
- 批准号:82371054
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
胆固醇合成蛋白CYP51介导线粒体通透性转换诱发Th17/Treg细胞稳态失衡在舍格伦综合征中的作用机制研究
- 批准号:82370976
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
细胞周期蛋白依赖性激酶Cdk1介导卵母细胞第一极体重吸收致三倍体发生的调控机制研究
- 批准号:82371660
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
转运蛋白RCP调控巨噬细胞脂肪酸氧化参与系统性红斑狼疮发病的机制研究
- 批准号:82371798
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
G蛋白偶联受体GPR110调控Lp-PLA2抑制非酒精性脂肪性肝炎的作用及机制研究
- 批准号:82370865
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
新型小分子蛋白—人肝细胞生长因子三环域(hHGFK1)抑制破骨细胞及治疗小鼠骨质疏松的疗效评估与机制研究
- 批准号:82370885
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
蛋白精氨酸甲基化转移酶PRMT5调控PPARG促进巨噬细胞M2极化及其在肿瘤中作用的机制研究
- 批准号:82371738
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
紧密连接蛋白PARD3下调介导黏膜上皮屏障破坏激活STAT3/SNAI2通路促进口腔白斑病形成及进展的机制研究
- 批准号:82370954
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
相似海外基金
Investigating the molecular mechanisms of membrane remodeling by coronaviruses
研究冠状病毒膜重塑的分子机制
- 批准号:
10724399 - 财政年份:2023
- 资助金额:
$ 58.16万 - 项目类别:
Mitochondrial Membrane Dynamics in Th17 Cells
Th17 细胞的线粒体膜动力学
- 批准号:
10733013 - 财政年份:2023
- 资助金额:
$ 58.16万 - 项目类别:
Targeting Cancer at the Protein-Membrane Interface
在蛋白质-膜界面靶向癌症
- 批准号:
10580562 - 财政年份:2023
- 资助金额:
$ 58.16万 - 项目类别:
Investigating the Lysosome and Plasma Membrane Systems in Protecting Cells Against Age-induced Amino Acid Toxicity
研究溶酶体和质膜系统保护细胞免受年龄诱导的氨基酸毒性的作用
- 批准号:
10680314 - 财政年份:2023
- 资助金额:
$ 58.16万 - 项目类别:
Cell membrane-targeting proteoglycan chimeras as selective growth factor signaling actuators
作为选择性生长因子信号传导执行器的细胞膜靶向蛋白聚糖嵌合体
- 批准号:
10588085 - 财政年份:2023
- 资助金额:
$ 58.16万 - 项目类别:
Understanding how membrane composition directs membrane protein structure and function
了解膜成分如何指导膜蛋白结构和功能
- 批准号:
10630518 - 财政年份:2023
- 资助金额:
$ 58.16万 - 项目类别:
Deciphering the role of lysosomal membrane permeabilization in Diabetic Cardiac Injury
解读溶酶体膜透化在糖尿病心脏损伤中的作用
- 批准号:
10359602 - 财政年份:2022
- 资助金额:
$ 58.16万 - 项目类别:
Biophysical studies of viral membrane fusion proteins
病毒膜融合蛋白的生物物理学研究
- 批准号:
10642837 - 财政年份:2022
- 资助金额:
$ 58.16万 - 项目类别:
Project 3: Defining and defeating the mechanisms of outer membrane biogenesis in Gram-negative bacteria
项目 3:定义并破解革兰氏阴性菌外膜生物发生机制
- 批准号:
10699956 - 财政年份:2022
- 资助金额:
$ 58.16万 - 项目类别:
New tools to advance biophysical study and inhibition of peripheral membrane proteins.
推进生物物理研究和外周膜蛋白抑制的新工具。
- 批准号:
10795403 - 财政年份:2022
- 资助金额:
$ 58.16万 - 项目类别: