Structural studies of the Apicomplexan glideosome-associated connector platform

顶端复合体滑翔体相关连接器平台的结构研究

基本信息

  • 批准号:
    BB/W001764/1
  • 负责人:
  • 金额:
    $ 69.31万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

A parasite grows in a different organism and while it is usually not a benefit to the host, it can often cause disease. The Apicomplexan parasites are single-celled, animal-like organisms which cause a range of diseases in humans and animals. Notably, Plasmodium falciparum is the chief cause of fatal malaria, while. Toxoplasma gondii, one of the world's most common parasites, and is of veterinary and medical importance, as it can cause abortion or congenital disease. It infects humans, wild and domestic animals, including birds, cats, sheep, goats, cattle, pigs and poultry. Toxoplasmosis has an enormous socio-economic and health impacts across the globe. Central to the survival of these parasite is their distinct ability to move (be motile), which allows them to target and invade host cells, live inside and subsequent escape. The molecular strategies that these parasite species employ to enter and escape their target cells are shared. An assembly of proteins form a molecular machine inside the parasite, known as the glideosome. A new protein, the glideosome-associated connector (GAC) has been recently discovered which represents a crucial molecular link between the host cell and the parasite cellular skeleton. This foothold allows the parasite to grip and move with respect to the host cell.This research project aims investigate the molecular shapes and interactions of the glideosome-associated connector (GAC) protein and define the architecture of this multi-component system. This information will help us to see at the atomic level how these parasites can move, and as this process is essential for parasite survival it will provide new guidance for the rational design of new vaccine strategies.
寄生虫生长在不同的生物体中,虽然它通常对宿主没有好处,但它往往会引起疾病。顶复门寄生虫是单细胞的动物样生物体,在人类和动物中引起一系列疾病。值得注意的是,恶性疟原虫是致命疟疾的主要原因,而。弓形虫是世界上最常见的寄生虫之一,具有兽医和医学重要性,因为它可以导致流产或先天性疾病。它感染人类、野生动物和家畜,包括鸟类、猫、绵羊、山羊、牛、猪和家禽。弓形虫病在地球仪上具有巨大的社会经济和健康影响。这些寄生虫生存的核心是它们独特的移动能力(能动性),这使它们能够瞄准和入侵宿主细胞,在里面生活并随后逃跑。这些寄生虫物种进入和逃离其靶细胞的分子策略是共享的。一组蛋白质在寄生虫体内形成了一个分子机器,称为滑体。最近发现了一种新的蛋白质,即滑动体相关连接器(GAC),它代表了宿主细胞和寄生虫细胞骨架之间的关键分子联系。这个立足点使寄生虫能够抓住宿主细胞并相对于宿主细胞移动。本研究项目旨在研究滑动体相关连接器(GAC)蛋白的分子形状和相互作用,并定义这个多组分系统的结构。这些信息将帮助我们在原子水平上了解这些寄生虫如何移动,并且由于这一过程对于寄生虫的生存至关重要,因此它将为合理设计新的疫苗策略提供新的指导。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural and regulatory insights into the glideosome-associated connector from Toxoplasma gondii
对弓形虫滑翔体相关连接器的结构和监管见解
  • DOI:
    10.1101/2023.01.23.525158
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kumar A
  • 通讯作者:
    Kumar A
Structural and regulatory insights into the glideosome-associated connector from Toxoplasma gondii.
  • DOI:
    10.7554/elife.86049
  • 发表时间:
    2023-04-04
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Kumar A;Vadas O;Dos Santos Pacheco N;Zhang X;Chao K;Darvill N;Rasmussen HØ;Xu Y;Lin GM;Stylianou FA;Pedersen JS;Rouse SL;Morgan ML;Soldati-Favre D;Matthews S
  • 通讯作者:
    Matthews S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steve Matthews其他文献

Bacteriophage protein PEIP is a potent emBacillus subtilis/em enolase inhibitor
噬菌体蛋白 PEIP 是一种强效的枯草芽孢杆菌烯醇酶抑制剂
  • DOI:
    10.1016/j.celrep.2022.111026
  • 发表时间:
    2022-07-05
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Kaining Zhang;Shanshan Li;Yawen Wang;Zhihao Wang;Nancy Mulvenna;Hang Yang;Peipei Zhang;Huan Chen;Yan Li;Hongliang Wang;Yongxiang Gao;Sivaramesh Wigneshweraraj;Steve Matthews;Kaiming Zhang;Bing Liu
  • 通讯作者:
    Bing Liu
FapA is an intrinsically disordered chaperone for Pseudomonas functional amyloid FapC.
FapA 是假单胞菌功能性淀粉样蛋白 FapC 的本质上无序的伴侣。
  • DOI:
    10.2139/ssrn.4207960
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    H. Rasmussen;Amit Kumar;B. Shin;Fisentzos Stylianou;Lee M. Sewell;Yingqi Xu;D. Otzen;J. Pedersen;Steve Matthews
  • 通讯作者:
    Steve Matthews
Establishing a KSHV<sup>+</sup> Cell Line (BCP-1) From Peripheral Blood and Characterizing Its Growth in Nod/SCID Mice
  • DOI:
    10.1182/blood.v91.5.1671
  • 发表时间:
    1998-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Chris Boshoff;Shou-Jiang Gao;Lyn E. Healy;Steve Matthews;Alero J. Thomas;Loinel Coignet;Roger A. Warnke;James A. Strauchen;Estella Matutes;Onsi W. Kamel;Patrick S. Moore;Robin A. Weiss;Yuan Chang
  • 通讯作者:
    Yuan Chang
The Imprudence of the Vulnerable
  • DOI:
    10.1007/s10677-013-9482-8
  • 发表时间:
    2013-11-26
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Steve Matthews
  • 通讯作者:
    Steve Matthews
Unreal Friends
  • DOI:
    10.1023/a:1011414704851
  • 发表时间:
    2001-01-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Dean Cocking;Steve Matthews
  • 通讯作者:
    Steve Matthews

Steve Matthews的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steve Matthews', 18)}}的其他基金

Understanding the structural basis of specificity in mitochondrial lipid transport and its role in drug resistance
了解线粒体脂质转运特异性的结构基础及其在耐药性中的作用
  • 批准号:
    MR/S021191/1
  • 财政年份:
    2019
  • 资助金额:
    $ 69.31万
  • 项目类别:
    Research Grant
Structural basis of human TRIAP1/PRELI function in mitochondrial lipid transport and apoptosis
人TRIAP1/PRELI在线粒体脂质转运和细胞凋亡中功能的结构基础
  • 批准号:
    MR/M019403/1
  • 财政年份:
    2015
  • 资助金额:
    $ 69.31万
  • 项目类别:
    Research Grant
Mechanism of poly-SUMO chain recognition by the ubiquitin ligase RNF4
泛素连接酶 RNF4 识别多聚 SUMO 链的机制
  • 批准号:
    BB/J016799/1
  • 财政年份:
    2012
  • 资助金额:
    $ 69.31万
  • 项目类别:
    Research Grant
Regulating amyloid formation: structural studies of the secretion and assembly of 'curli' fibres
调节淀粉样蛋白的形成:“curli”纤维分泌和组装的结构研究
  • 批准号:
    G1001664/1
  • 财政年份:
    2011
  • 资助金额:
    $ 69.31万
  • 项目类别:
    Research Grant
Methyl TROSY of alanine residues in large protein complexes: development and application
大蛋白质复合物中丙氨酸残基的甲基TROSY:开发和应用
  • 批准号:
    BB/G004668/1
  • 财政年份:
    2009
  • 资助金额:
    $ 69.31万
  • 项目类别:
    Research Grant
Toxoplasma gondii attachment and invasion: architecture, assembly and recognition of microneme protein complexes
弓形虫附着和入侵:微线体蛋白复合物的结构、组装和识别
  • 批准号:
    G0800038/1
  • 财政年份:
    2008
  • 资助金额:
    $ 69.31万
  • 项目类别:
    Research Grant
Specificity in host carbohydrate-apicomplexan recognition
宿主碳水化合物-apicomplexan 识别的特异性
  • 批准号:
    BB/E02520X/1
  • 财政年份:
    2007
  • 资助金额:
    $ 69.31万
  • 项目类别:
    Research Grant

相似国自然基金

脂滴聚集型小胶质细胞介导的髓鞘病变促进小鼠抑郁样行为及其机制研究
  • 批准号:
    82371528
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
星形胶质细胞介导的髓鞘吞噬参与慢性脑低灌注白质损伤的机制研究
  • 批准号:
    82371307
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

REU Site: Field and laboratory studies of coastal marine processes at the Shannon Point Marine Center
REU 站点:香农角海洋中心沿海海洋过程的现场和实验室研究
  • 批准号:
    2349136
  • 财政年份:
    2024
  • 资助金额:
    $ 69.31万
  • 项目类别:
    Continuing Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
  • 批准号:
    2349338
  • 财政年份:
    2024
  • 资助金额:
    $ 69.31万
  • 项目类别:
    Continuing Grant
CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
  • 批准号:
    2339353
  • 财政年份:
    2024
  • 资助金额:
    $ 69.31万
  • 项目类别:
    Continuing Grant
Experimental and numerical studies on internal erosion of granular soils
颗粒土内部侵蚀的实验与数值研究
  • 批准号:
    DE240101106
  • 财政年份:
    2024
  • 资助金额:
    $ 69.31万
  • 项目类别:
    Discovery Early Career Researcher Award
Development of B cell functional studies on primary antibody deficiencies
一抗缺陷 B 细胞功能研究的进展
  • 批准号:
    502607
  • 财政年份:
    2024
  • 资助金额:
    $ 69.31万
  • 项目类别:
Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination
在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究
  • 批准号:
    BB/Y006232/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.31万
  • 项目类别:
    Research Grant
Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination
在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究
  • 批准号:
    BB/Y006151/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.31万
  • 项目类别:
    Research Grant
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
  • 批准号:
    10676358
  • 财政年份:
    2024
  • 资助金额:
    $ 69.31万
  • 项目类别:
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
  • 财政年份:
    2024
  • 资助金额:
    $ 69.31万
  • 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
  • 批准号:
    10748606
  • 财政年份:
    2024
  • 资助金额:
    $ 69.31万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了