Quantitative metabolomics for prediction of lameness and elucidation of related mechanistic pathways in dairy cattle
用于预测奶牛跛行并阐明相关机制途径的定量代谢组学
基本信息
- 批准号:BB/W005654/1
- 负责人:
- 金额:$ 85.56万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Complex diseases of humans and livestock are common and extremely challenging to manage. Many factors contribute towards an individual's risk of experiencing disease, including genetic and non-genetic factors. When trying to manage disease risk, the relative importance of these different factors needs to be measured and understood, which is difficult to achieve. Ultimately, these challenges often result in a lack of knowledge and understanding of how to prevent or reduce disease risk in a population. Lameness (impaired mobility) is one of the highest priority diseases for the UK dairy industry. This painful and debilitating condition affects cattle welfare as well as production and health. Current estimates suggest that at any one time ~30% of dairy cows in UK herds are suffering from lameness. Implications extend beyond the cow to the sustainability of dairy farming and environmental impacts from disease reducing efficiencies. As a complex disease with many factors contributing to its occurrence, lameness is inherently challenging to tackle and major gaps exist in our understanding of disease processes contributing to lameness. What is known, is that cows entering their first lactation (heifers) are the most important group of cattle in a dairy herd in terms of preventing lameness; heifers represent the future of the herd and once cows experience a first episode of lameness pathological changes occur in the foot that place them at higher risk of recurrence. If we are to prevent lameness occurring in the first place, attention should be focussed on heifers. Detection of lameness is currently only possible at an advanced stage of disease when pain causes cows to walk with an altered gait. The ability to detect lameness early on, prior to this stage, would be a huge advancement on the current situation resulting in improved health, welfare and productivity.Metabolomics is a technique that allows the end products (metabolome) of genetic and non-genetic factors influencing disease risk to be measured. By comparing the metabolome of diseased and healthy individuals, signatures (biomarkers) of disease, can be identified. To make these comparisons, complex statistical methods can be used; a powerful combination of statistics and metabolomics can identify disease biomarkers and further our understanding of processes contributing to disease risk. Our previous work has shown that by using this approach lameness can be predicted with an accuracy of 93% from the metabolome of urine samples collected prior to calving (1 - 10 weeks prior to lameness). This project, will use an innovative combination of metabolomics and artificial intelligence to identify biomarkers for lameness in dairy cows. Groups of 160 dairy heifers will be monitored over a prolonged period of time (up to 305 days or one lactation per animal) with collection of regular urine, plasma and milk samples and data related to lameness, health and production; providing a valuable resource for this and future projects. Paired samples will be selected from lame and non-lame first lactation cows shortly before the first case of lameness and prior to calving. These time-points have been selected as being important in the development of lesions causing lameness. Computational models will be developed to predict the occurrence of lameness by comparing the metabolome of diseased and healthy individuals; identifying signals in the metabolome that predict lameness and using these to understand the disease processes occurring. Results will provide a vital insight into disease pathways contributing to lameness in dairy cows and the ability to predict disease risk. This in turn will inform disease management and provide a tool for early prediction of lameness, offering a step change in the detection and management of lameness in dairy cows. This approach is applicable to many other complex diseases in both livestock and humans and will be further utilised in future work.
人类和牲畜的复杂疾病很常见,管理起来极具挑战性。许多因素导致个人患病的风险,包括遗传和非遗传因素。当试图管理疾病风险时,需要衡量和理解这些不同因素的相对重要性,这是很难实现的。最终,这些挑战往往导致缺乏对如何预防或减少人群疾病风险的知识和理解。跛行(行动不便)是英国乳制品行业最优先考虑的疾病之一。这种痛苦和衰弱的状况影响牛的福利以及生产和健康。目前的估计表明,英国牛群中任何时候都有约30%的奶牛患有跛行。其影响不仅限于奶牛,还包括奶牛养殖的可持续性以及疾病降低效率对环境的影响。作为一种复杂的疾病,有许多因素导致其发生,跛行本质上是具有挑战性的解决和重大差距存在于我们的理解疾病过程中,导致跛行。已知的是,就预防跛行而言,进入第一次泌乳期的奶牛(小母牛)是奶牛群中最重要的牛群;小母牛代表了牛群的未来,一旦奶牛首次发生跛行,足部就会发生病理变化,使其复发风险更高。如果我们要防止跛行发生在第一位,注意力应该集中在小母牛。目前,只有在疾病晚期,当疼痛导致奶牛步态改变时,才有可能检测到跛行。在此阶段之前早期检测跛行的能力将是对目前状况的巨大进步,从而改善健康,福利和生产力。代谢组学是一种允许测量影响疾病风险的遗传和非遗传因素的最终产物(代谢组)的技术。通过比较患病和健康个体的代谢组,可以鉴定疾病的特征(生物标志物)。为了进行这些比较,可以使用复杂的统计方法;统计学和代谢组学的强大组合可以识别疾病生物标志物,并进一步了解导致疾病风险的过程。我们以前的工作表明,通过使用这种方法,可以从产犊前(跛行前1 - 10周)收集的尿液样本的代谢组预测跛行,准确率为93%。该项目将使用代谢组学和人工智能的创新组合来识别奶牛跛行的生物标志物。将对160头奶牛小母牛进行长期监测(每头动物最多305天或一次泌乳),定期收集尿液、血浆和乳汁样本以及与跛行、健康和生产相关的数据;为本项目和未来项目提供宝贵的资源。在首次跛行前不久和产犊前,从跛行和非跛行第一次泌乳奶牛中选择配对样本。选择这些时间点是因为其在导致跛行的病变发展中具有重要意义。将开发计算模型,通过比较患病和健康个体的代谢组来预测跛行的发生;识别代谢组中预测跛行的信号,并使用这些信号来了解发生的疾病过程。结果将提供一个重要的洞察疾病的途径,有助于在奶牛跛行和预测疾病风险的能力。这反过来将为疾病管理提供信息,并为跛行的早期预测提供工具,为奶牛跛行的检测和管理提供一个步骤。这种方法适用于牲畜和人类的许多其他复杂疾病,并将在未来的工作中进一步利用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura Randall其他文献
Laura Randall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
“寒淫”轻重强度致病及转归的转录组与代谢组整合研究
- 批准号:30873212
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Prenatal Longitudinal Metabolomics Profiling for Early Childhood Growth Trajectories and Obesity Risk in a US Biracial Birth Cohort
美国混血出生队列中儿童早期生长轨迹和肥胖风险的产前纵向代谢组学分析
- 批准号:
10580910 - 财政年份:2023
- 资助金额:
$ 85.56万 - 项目类别:
The Role of Sex Hormones in Stroke Risk: A Sex-Specific Integrative Omics Analysis in the NHLBI Trans-Omics for Precision Medicine Cohorts
性激素在中风风险中的作用:精准医学队列 NHLBI 跨组学中性别特异性综合组学分析
- 批准号:
10657840 - 财政年份:2023
- 资助金额:
$ 85.56万 - 项目类别:
Identifying multimodal biomarkers for autologous serum tears in the treatment of chronic postoperative ocular pain
识别治疗慢性术后眼痛的自体血清泪液的多模式生物标志物
- 批准号:
10794761 - 财政年份:2023
- 资助金额:
$ 85.56万 - 项目类别:
Cardiovascular risk from comprehensive evaluation of the CT calcium score exam
CT钙评分检查综合评估心血管风险
- 批准号:
10853742 - 财政年份:2023
- 资助金额:
$ 85.56万 - 项目类别:
Integrated exposome profiling to identify environmental risk factors of metabolic disease in mid- and late-life
综合暴露组分析可识别中晚年代谢疾病的环境危险因素
- 批准号:
10638457 - 财政年份:2023
- 资助金额:
$ 85.56万 - 项目类别:
Biomarkers of Habitual Short Sleep and Related Cardiometabolic Risk
习惯性短睡眠和相关心脏代谢风险的生物标志物
- 批准号:
10734674 - 财政年份:2023
- 资助金额:
$ 85.56万 - 项目类别:
Interplay of the T Cell Repertoire Development and Early Life Exposure on Incident Risk of Peanut Allergy
T 细胞库发育和生命早期接触对花生过敏事件风险的相互作用
- 批准号:
10742029 - 财政年份:2023
- 资助金额:
$ 85.56万 - 项目类别:
Cardiovascular risk from comprehensive evaluation of the CT calcium score exam
CT钙评分检查综合评估心血管风险
- 批准号:
10667803 - 财政年份:2023
- 资助金额:
$ 85.56万 - 项目类别:
Exploring the role and mechanisms of action of UC pouchitis-associated pathobionts (PAP) to gain insights into the etiopathogenesis of Inflammatory Bowel Diseases
探索 UC 储袋炎相关病原体 (PAP) 的作用和作用机制,以深入了解炎症性肠病的发病机制
- 批准号:
10679821 - 财政年份:2023
- 资助金额:
$ 85.56万 - 项目类别:
ADVANCED COMPREHENSIVE MAGNETIC RESONANCE SOLUTION FOR THE NONINVASIVE CHARACTERIZATION OF HIGH RESOLUTION METABOLIC BIOMARKERS OF RISK IN PATIENTS WITH ALZHEIMER'S DISEASE AND DEMENTIA
先进的综合磁共振解决方案,用于无创表征阿尔茨海默病和痴呆症患者风险的高分辨率代谢生物标志物
- 批准号:
10820517 - 财政年份:2023
- 资助金额:
$ 85.56万 - 项目类别: