"Feeling the Distance: Investigating the molecular mechanisms of intrinsic cell size sensing in neurons using stem cells, bioengineering and imaging"

“感受距离:利用干细胞、生物工程和成像研究神经元内在细胞大小感知的分子机制”

基本信息

  • 批准号:
    BB/W006561/1
  • 负责人:
  • 金额:
    $ 63.19万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Neurons are specialised cells that connect to each other and to other cells types across our bodies and rely information and commands from our nervous system to the other organs. Like any other cell, their shape is intimately linked to their function, and as some of the target organs can be sometimes at considerable distance from the brain, neurons themselves have to span vast distances. For example, spinal Motor Neurons need to connect the spinal cord with every single muscle fibre in our body and can sometime have axons -the long protrusions that neurons use a "cable" to connect to other cells" exceeding 1m in length. This extreme shape poses a challenge for the neurons: the main centre of production for resources (proteins and RNA) is in the cell bodies, but the main site of high demand and consumption is at the end of a 1m long axon, with the two sites connected by a chain of transporter molecules. Moreover, demands in the synapses at the end of the axon need to be matched by production of component in the soma, but for very long axons demands might change swiftly and the vast distance separating the end of the cell make it impossible to run a "just-in-time" production line.For these reasons, neurons have adopted mechanisms to create local production and regulation of resources away from the cell body and into the axon, rendering the latter more independent and capable of buffering fast changes in demand.One key question in all this, is how do neurons sense their own length and decide to enact these length-dependent adaptation, and whether there is one specific class of signals responsible for sensing axonal length or if the process is more guided by a complex interplay between supply and demand across multiple fronts. This is a fundamental question for basic neurobiology, but it is also very relevant for understanding the basis of several human diseases, as in several neurodegenerative disorders imbalances in supply and demand of energy at the far end of the axon seems to be some of the earlier observable events in the chain of problems that ends with the death of certain neurons, like in Amyotrophic Lateral Sclerosis.Up until now it has been complex to study this mechanism systematically, as in animal models it is not possible to systematically change the length of axons in a simple way, and cell culture systems generally have very short neurons. As a result, most of the proposed mechanisms for this sensing capacity of neurons is centred around relatively short axons, usually well below 1mm.We have developed a novel platform that combines bioengineering, human stem cells and advanced imaging to create ordered arrays of human motor neurons with controllable length up to and exceeding 1cm, which we have used to successfully demonstrate that several important mechanisms are fundamentally altered in the axons when a certain length is reached (i.e. "threshold length") and we therefore perfectly poised to systematically study the mechanisms behind neuronal size sensing, to understand what determines this "threshold length". To do so, we propose to use our platform and systematically alter all the different pathways we observed changing with the axonal length, to determine if any of them is directly responsible for determining the "threshold" length, and if so what is the sequence of events that leads the neurons to enact these adaptations. Our hypothesis is that it will be the dynamics of ATP (the cell's unit of currency for energy and basis of all other function) that will be one of the early -if not the first- feedback system, which determines at which length energy levels are no longer sustainable and more local processes for production and upkeep need to be implemented.
神经元是一种特殊的细胞,它们相互连接,并与我们全身的其他细胞类型相连,依靠神经系统向其他器官发出的信息和命令。像任何其他细胞一样,它们的形状与它们的功能密切相关,而且由于一些目标器官有时离大脑相当远,神经元本身必须跨越很远的距离。例如,脊髓运动神经元需要将脊髓与我们身体的每一根肌肉纤维连接起来,有时可能有轴突——神经元使用“电缆”连接到其他“长度超过1米”的细胞的长突起。这种极端的形状给神经元带来了挑战:生产资源(蛋白质和RNA)的主要中心在细胞体中,但高需求和高消耗的主要部位在1米长的轴突末端,这两个部位由转运分子链连接起来。此外,轴突末端的突触的需求需要与体细胞中组件的生产相匹配,但对于非常长的轴突来说,需求可能会迅速变化,而细胞末端之间的巨大距离使得“及时”的生产线不可能运行。由于这些原因,神经元采用了一种机制来创造局部生产和调节资源,使其远离细胞体并进入轴突,使后者更加独立,能够缓冲需求的快速变化。所有这一切的一个关键问题是,神经元是如何感知它们自己的长度并决定实施这些长度依赖的适应,以及是否有一种特定的信号负责感知轴突长度,或者这个过程是否更多地受到多个方面供需之间复杂的相互作用的指导。这是基础神经生物学的一个基本问题,但它也与理解一些人类疾病的基础非常相关,因为在一些神经退行性疾病中,轴突远端的能量供需失衡似乎是一些早期可观察到的事件,这些事件以某些神经元的死亡而告终,比如肌萎缩性侧索硬化症。到目前为止,系统地研究这一机制一直很复杂,因为在动物模型中,不可能以简单的方式系统地改变轴突的长度,并且细胞培养系统通常具有非常短的神经元。因此,大多数提出的神经元感知能力的机制都集中在相对较短的轴突上,通常远低于1毫米。我们已经开发了一种结合生物工程、人类干细胞和先进成像技术的新平台,以创建长度可控制在1cm以上的人类运动神经元的有序阵列,我们已经成功地证明了当达到一定长度时轴突中的几个重要机制发生了根本性的改变。“阈值长度”),因此我们完全准备好系统地研究神经元大小感知背后的机制,以了解是什么决定了这个“阈值长度”。为了做到这一点,我们建议使用我们的平台,系统地改变我们观察到的随着轴突长度变化的所有不同通路,以确定它们中是否有任何直接负责决定“阈值”长度,如果是这样,导致神经元制定这些适应的事件顺序是什么。我们的假设是,ATP(细胞的能量货币单位和所有其他功能的基础)的动态将是早期(如果不是第一个)反馈系统之一,它决定了能量水平在什么长度上不再可持续,需要实施更多的局部生产和维护过程。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Axonal Length Determines Distinct Homeostatic Phenotypes in Human iPSC Derived Motor Neurons on a Bioengineered Platform.
轴突长度决定生物工程平台上人类 iPSC 衍生的运动神经元的独特稳态表型。
  • DOI:
    10.1002/adhm.202101817
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    10
  • 作者:
    Hagemann C
  • 通讯作者:
    Hagemann C
Bioengineering human skeletal muscle models: Recent advances, current challenges and future perspectives.
  • DOI:
    10.1016/j.yexcr.2022.113133
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Y. Jiang;T. Torun;S. Maffioletti;Andrea Serio;Francesco Saverio Tedesco
  • 通讯作者:
    Y. Jiang;T. Torun;S. Maffioletti;Andrea Serio;Francesco Saverio Tedesco
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea Serio其他文献

Nanoneedles enable spatiotemporal lipidomics of living tissues
纳米针能够实现活组织的时空脂质组学。
  • DOI:
    10.1038/s41565-025-01955-8
  • 发表时间:
    2025-06-16
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Chenlei Gu;Davide Alessandro Martella;Leor Ariel Rose;Nadia Rouatbi;Cong Wang;Alaa Zam;Valeria Caprettini;Magnus Jensen;Shiyue Liu;Cathleen Hagemann;Siham Memdouh;Andrea Serio;Vincenzo Abbate;Khuloud T. Al-Jamal;Maddy Parsons;Mads S. Bergholt;Paul M. Brennan;Assaf Zaritsky;Ciro Chiappini
  • 通讯作者:
    Ciro Chiappini
Shortened TDP43 isoforms upregulated by neuronal hyperactivity drive TDP43 pathology in ALS
神经元过度活跃上调缩短的 TDP43 异构体驱动 ALS 中的 TDP43 病理学
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaitlin Weskamp;Elizabeth H M Tank;R. Miguez;Jonathon P. McBride;N. Gómez;Matthew A. White;Ziqiang Lin;C. Gonzalez;Andrea Serio;J. Sreedharan;S. Barmada
  • 通讯作者:
    S. Barmada
Optimal Potentials for Quantum Graphs
量子图的最优势
  • DOI:
    10.1007/s00023-019-00783-6
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Kurasov;Andrea Serio
  • 通讯作者:
    Andrea Serio
Unsupervised Cell Segmentation and Labelling in Neural Tissue Images
神经组织图像中的无监督细胞分割和标记
  • DOI:
    10.3390/app11093733
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Iglesias;Felipe Antunes;C. Hagemann;D. Gómez;H. Bustince;R. Patani;Andrea Serio;B. De Baets;C. López
  • 通讯作者:
    C. López
Automated and unbiased classification of motor neuron phenotypes with single cell resolution in ALS tissue
以单细胞分辨率对 ALS 组织中的运动神经元表型进行自动、公正的分类
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Hagemann;Giulia E. Tyzack;Doaa M. Taha;H. Devine;L. Greensmith;J. Newcombe;R. Patani;Andrea Serio;Raphaëlle Luisier
  • 通讯作者:
    Raphaëlle Luisier

Andrea Serio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea Serio', 18)}}的其他基金

Developing an Open Source Imaging-Driven Multifunctional Bioplotter (IDMB) for next generation in vitro modelling
开发用于下一代体外建模的开源成像驱动的多功能生物绘图仪 (IDMB)
  • 批准号:
    BB/T011572/1
  • 财政年份:
    2021
  • 资助金额:
    $ 63.19万
  • 项目类别:
    Research Grant

相似海外基金

Galactic Outflows: Pushing the Distance Frontiers
银河流出:推动距离边界
  • 批准号:
    DE240100136
  • 财政年份:
    2024
  • 资助金额:
    $ 63.19万
  • 项目类别:
    Discovery Early Career Researcher Award
WITHIN TOUCHING DISTANCE brings together artistic & technological innovation to explore how arts-based therapeutic content can be combined with XR.
触手可及的距离汇聚了艺术
  • 批准号:
    ES/Y011082/1
  • 财政年份:
    2024
  • 资助金额:
    $ 63.19万
  • 项目类别:
    Research Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
  • 批准号:
    2327571
  • 财政年份:
    2023
  • 资助金额:
    $ 63.19万
  • 项目类别:
    Standard Grant
Evaluation of Japanese pediatric surgeon proficiency using the NCD, and investigation of patient preferences for a trade-off between travel distance and potential outcome improvement
使用 NCD 评估日本儿科外科医生的熟练程度,并调查患者偏好以权衡旅行距离和潜在的结果改善
  • 批准号:
    23K09596
  • 财政年份:
    2023
  • 资助金额:
    $ 63.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of the function of learner's expression in distance education and study of learning improvement by expression promotion system
学习者表达在远程教育中的作用阐释及表达促进系统促进学习的研究
  • 批准号:
    23H01008
  • 财政年份:
    2023
  • 资助金额:
    $ 63.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Attempt to Communicate Implicit Group Norms through Development of Interpersonal Distance Norm-Aware Teleoperated Robot
尝试通过开发人际距离规范感知遥控机器人来传达隐性群体规范
  • 批准号:
    23K16983
  • 财政年份:
    2023
  • 资助金额:
    $ 63.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Construction of models and analysis/design methods for molecular communication systems considering the distance between molecular robots
考虑分子机器人间距离的分子通信系统模型构建及分析/设计方法
  • 批准号:
    22KJ2683
  • 财政年份:
    2023
  • 资助金额:
    $ 63.19万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Clarification of distance compression and personal space perception in virtual environment using physiological signals
利用生理信号阐明虚拟环境中的距离压缩和个人空间感知
  • 批准号:
    23K11152
  • 财政年份:
    2023
  • 资助金额:
    $ 63.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RAISE: AraOptical 2.0: MISO Free-Space Optical Communications for Long-Distance, High-Capacity X-Haul Networking
RAISE:AraOptical 2.0:用于长距离、高容量 X-Haul 网络的 MISO 自由空间光通信
  • 批准号:
    2336057
  • 财政年份:
    2023
  • 资助金额:
    $ 63.19万
  • 项目类别:
    Standard Grant
Realizing itinerant Rydberg models through distance-selective dissipation
通过距离选择性耗散实现流动里德伯模型
  • 批准号:
    516378631
  • 财政年份:
    2023
  • 资助金额:
    $ 63.19万
  • 项目类别:
    WBP Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了