Transcription at the centromere: Opportunity and danger for the maintenance of epigenetic identity
着丝粒转录:维持表观遗传特性的机遇和危险
基本信息
- 批准号:BB/W00674X/1
- 负责人:
- 金额:$ 55.63万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
How to make an organism out of a single cell is one of the most amazing processes in biology. Starting with a single fertilized egg, this cell will start to divide many times to give rise to a multicellular animal, plant or fungus. The cell divisions will not stop once fully grown but continue through the lifetime of the organism. This is essential to ensure that body shape and size are maintained, while experiencing natural cell death or caused by interacting with its environment.Importantly, what is important at the macroscopic level of an organism also plays a role at the cellular level. Developing but also maintaining its identity is an essential task for a cell. Cellular identity is encoded in the genome which comes in the shape of chromosomes. Chromosomes are formed by long fibers of chromatin, made of DNA that is packaged together with proteins called histones. Four different histones H2A, H2B, H3 and H4 form a larger disk-shaped complex called a nucleosome around which the DNA is wrapped giving the chromatin fiber the appearance of beads on a string. During the cell cycle, chromosomes are duplicated in a mother cell and passed on to two daughter cells as cells divide. While most genetic information is encoded in the DNA sequence, it is widely appreciated that chromatin carries information that is passed on independently of the underlying DNA sequence. This form of inheritance is called "epigenetic" and can determine whether certain genes are expressed or define the identity of specific regions of the chromosome. Centromeres are among those specialised regions. They are visible as constrictions in X-shaped chromosomes under the microscope and essential for the separation of chromosomes during cell division.Centromere identity is determined epigenetically through the presence of a homolog of histone H3, the centromere-specific histone CENP-A (dCENP-A in Drosophila). Centromeric chromatin is composed of interspersed arrays of CENP-A and canonical histone H3 nucleosomes. While H3 is replenished during DNA replication in S-phase, loading of CENP-A in Drosophila and humans takes place in a replication-independent manner from late mitosis to G1. This process requires the removal of so-called placeholder H3-nucleosomes, which have been positioned on centromeric DNA-sequences during the previous S-phase. In recent years, we and other labs have presented evidence that one particular cellular process called transcription could allow for this chromatin remodeling to take place and allow the exchange of H3 by CENP-A.Cellular processes that require direct DNA contact like DNA replication or transcription induce large-scale chromatin remodeling events to allow the progression of DNA- and RNA- polymerases. The major role of transcription in the genome is to transcribe genes and produce RNA transcripts encoding proteins, transfer or ribosomal RNA. As there are no genes at the centromere, we hypothesise that transcription is instead used to remodel chromatin and destabilise nucleosomes enough to evict H3-placeholders. This would constitute another fascinating example, how nature solves complex problems by repurposing existing toolkits.Although an intriguing hypothesis, this process is still not understood and raises many questions: How does centromeric transcription distinguish CENP-A nucleosome that should be retained from placeholder H3-nucleosomes that should be removed? How is this process regulated? In a search for binding partners of CENP-A, we previously identified Spt6, a protein involved in recycling histones during transcription. Here, we propose to investigate the molecular details of human and Drosophila Spt6 binding to CENP-A and H3 histones and how transcription at the centromere contributes to CENP-A loading. By studying this essential evolutionary conserved process, centromeres can be used as a paradigm to understand the underlying mechanism of epigenetic inheritance to preserve the identity of the cell.
如何从一个单细胞中创造出一个有机体是生物学中最神奇的过程之一。从一个受精卵开始,这个细胞将开始多次分裂,产生多细胞动物、植物或真菌。细胞分裂不会在完全长大后停止,而是在生物体的整个生命周期中继续进行。这对于确保在经历自然细胞死亡或与环境相互作用时保持体型和大小至关重要。重要的是,在有机体宏观层面上重要的东西在细胞层面上也起作用。细胞的基本任务是发展和保持自身的特性。细胞身份编码在染色体形状的基因组中。染色体是由染色质的长纤维组成的,染色质是由DNA和组蛋白包裹在一起构成的。四种不同的组蛋白H2A, H2B, H3和H4形成一个更大的圆盘状复合体,称为核小体,DNA被包裹在核小体周围,使染色质纤维看起来像串在绳子上的珠子。在细胞周期中,染色体在母细胞中复制,并在细胞分裂时传递给两个子细胞。虽然大多数遗传信息是在DNA序列中编码的,但人们普遍认为染色质携带的信息是独立于潜在的DNA序列传递的。这种形式的遗传被称为“表观遗传”,可以决定某些基因是否被表达或确定染色体特定区域的身份。着丝粒是这些特殊区域之一。它们在显微镜下可见为x形染色体的缩窄,在细胞分裂过程中对染色体的分离至关重要。着丝粒身份是通过组蛋白H3的同系物,即着丝粒特异性组蛋白CENP-A(果蝇中的dCENP-A)的存在,在表观遗传上决定的。着丝粒染色质由穿插排列的CENP-A和典型组蛋白H3核小体组成。虽然H3在s期DNA复制过程中得到补充,但在果蝇和人类中,从有丝分裂晚期到G1期,CENP-A的加载以复制独立的方式进行。这个过程需要去除所谓的占位符h3核小体,这些核小体在之前的s期被定位在着丝粒dna序列上。近年来,我们和其他实验室已经提供了证据,证明一种称为转录的特殊细胞过程可以允许这种染色质重塑发生,并允许通过CENP-A交换H3。需要DNA直接接触的细胞过程,如DNA复制或转录,诱导大规模的染色质重塑事件,以允许DNA和RNA聚合酶的进展。转录在基因组中的主要作用是转录基因并产生编码蛋白质、转移RNA或核糖体RNA的RNA转录本。由于在着丝粒上没有基因,我们假设转录被用来重塑染色质和破坏核小体的稳定,足以驱逐h3占位符。这将构成另一个有趣的例子,说明大自然如何通过重新利用现有的工具包来解决复杂的问题。虽然这是一个有趣的假设,但这个过程仍然没有被理解,并提出了许多问题:着丝粒转录如何区分应该保留的CENP-A核小体和应该去除的h3核小体?这个过程是如何调节的?在寻找CENP-A的结合伙伴时,我们之前发现了Spt6,一种在转录过程中参与组蛋白循环的蛋白质。在这里,我们建议研究人类和果蝇Spt6与CENP-A和H3组蛋白结合的分子细节,以及着丝粒上的转录如何促进CENP-A装载。通过研究这一重要的进化保守过程,着丝粒可以作为一个范例来理解表观遗传保护细胞身份的潜在机制。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Centromere structure and function: lessons from Drosophila.
- DOI:10.1093/genetics/iyad170
- 发表时间:2023-12-06
- 期刊:
- 影响因子:3.3
- 作者:Kyriacou, Eftychia;Heun, Patrick
- 通讯作者:Heun, Patrick
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick Heun其他文献
The ins and outs of CENP-A: Chromatin dynamics of the centromere-specific histone
着丝粒特异性组蛋白 CENP-A 的来龙去脉:着丝粒的染色质动力学
- DOI:
10.1016/j.semcdb.2022.04.003 - 发表时间:
2023-02-15 - 期刊:
- 影响因子:6.000
- 作者:
Alessandro Stirpe;Patrick Heun - 通讯作者:
Patrick Heun
Patrick Heun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
癌症和神经系统失调中的CENP-A泛素化的细胞器间信号通路
- 批准号:31970665
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
CENP-A/N/L/C着丝粒构效解析
- 批准号:31970669
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
治療抵抗性前立腺がんで発現上昇する遺伝子CENPMの機能解析
CENPM 的功能分析,该基因在治疗抵抗性前列腺癌中表达增加
- 批准号:
23K15758 - 财政年份:2023
- 资助金额:
$ 55.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular dissection of extrachromosomal DNA formation, development, and evolution
染色体外 DNA 形成、发育和进化的分子解剖
- 批准号:
10640520 - 财政年份:2023
- 资助金额:
$ 55.63万 - 项目类别:
Aging induced DNA double-strand break analysis in yeast
酵母中衰老诱导的 DNA 双链断裂分析
- 批准号:
10605475 - 财政年份:2023
- 资助金额:
$ 55.63万 - 项目类别:
2023 Chromosome Dynamics Gordon Research Conference and Seminar
2023年染色体动力学戈登研究会议暨研讨会
- 批准号:
10750086 - 财政年份:2023
- 资助金额:
$ 55.63万 - 项目类别:
Defining the Minimal Trigger for Human Centromere Formation
定义人类着丝粒形成的最小触发因素
- 批准号:
EP/X025675/1 - 财政年份:2023
- 资助金额:
$ 55.63万 - 项目类别:
Fellowship
Selective Inhibitors of T Cell Activation Target Exportin-1 at Cys528 to Suppress Pathological T Cell Activation
T 细胞激活的选择性抑制剂 Cys528 靶点 Exportin-1 抑制病理性 T 细胞激活
- 批准号:
10659905 - 财政年份:2023
- 资助金额:
$ 55.63万 - 项目类别:
MAGIC tools for genome-wide mosaic analysis with existing Drosophila resources (Equipment Supplement 2023)
利用现有果蝇资源进行全基因组嵌合分析的 MAGIC 工具(设备补充资料 2023)
- 批准号:
10808546 - 财政年份:2023
- 资助金额:
$ 55.63万 - 项目类别:














{{item.name}}会员




