Kinetochore Assembly and Regulation
着丝粒组装和调控
基本信息
- 批准号:10717202
- 负责人:
- 金额:$ 44.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccountingAcuteAddressAdultAneuploidyAreaAuxinsBenchmarkingBiochemicalBiochemistryBiological AssayBiologyCell CycleCell Cycle RegulationCell ExtractsCell divisionCellsCellular biologyCentromereCharacteristicsChromosome SegregationComplementComplexCongenital AbnormalityDNADNA-Directed DNA PolymeraseDiagnosisDisastersEnsureEventGeneticGenomeGoalsHealthHumanIsotopesKinetochoresLifeMalignant NeoplasmsMass Spectrum AnalysisMental disordersMethodsMicrotubulesMitosisMolecularNucleosomesOrganismPharmaceutical PreparationsPhosphorylationPhosphotransferasesPhysiologicalProcessPropertyProtein Degradation InductionProteinsProteomicsQualifyingReactionRegulationResearchRoleS phaseSaccharomyces cerevisiaeSignal TransductionSiteSpecific qualifier valueSystemTechniquesTestingTherapeuticTherapeutic InterventionYeastscancer celldaughter cellexperimental studyflexibilityinnovationinterestmacromolecular assemblyreconstitutionstable isotopestoichiometrytechnology platform
项目摘要
Project Summary
During chromosome segregation, each daughter cell receives a complete complement of the genome, and this
is repeated for every cell division. Therefore, chromosome segregation must be extraordinarily accurate and
robust to ensure the health of an adult human; otherwise, disasters like cancers can occur. Cancer cells exploit
and rewire their chromosome segregation machinery to meet their insatiable need of uncontrolled cell division.
Successful chemotherapeutic drugs kill cancer cells through disrupting this obligate need. Thus, understanding
mechanisms of chromosome segregation has far-reaching implications to human health.
Kinetochores execute chromosome segregation by connecting chromosomal centromeres to spindle
microtubules. This connection must be flexible to accommodate the fleeting passage of the DNA polymerases
that replicate centromeres during the S phase; it must also be strong to withstand the pulling force of spindle
microtubules during mitosis. Cells coordinate these opposing attributes of kinetochores temporally and regulate
the transition between them. Because kinetochores and their associated regulators are highly conserved among
the eukaryotic kingdoms of life, we will use the yeast Saccharomyces cerevisiae as a primary research organism
to study how kinetochores are assembled. The central hypothesis is that kinetochore assembly is a highly
cooperative process that involves multiple protein-protein and protein-DNA contacts, which are controlled by cell
cycle signals. To understand how kinetochores are assembled, Specific Aim 1 will apply a quantitative
proteomics platform to define the steps of kinetochore assembly; making use of stable isotope based mass
spectrometry (MS) to analyze native kinetochores as well as reconstituted kinetochores assembled from
concentrated cell extracts. Two key interfaces govern kinetochore assembly: the first one is between
centromeres and inner kinetochores, while the second one is between inner and outer kinetochores. Specific
Aim 2 will probe the centromere-inner kinetochore interface and focus on how phosphorylation of specific inner
kinetochore components may regulate it. Specific Aim 3 will dissect the inner-outer kinetochore interface and
study its cell cycle control with an ultimate goal of reconstituting the kinetochore that retains its physiological
properties. All together, these studies are aimed at understanding how kinetochores are assembled.
Understanding kinetochore assembly has broad relevance, because the rules and methods of study apply to all
systems in which signals are integrated to control macromolecular assemblies. Our collaborative team, equipped
with interdisciplinary expertise and shared interest in kinetochore biology, is uniquely qualified to carry out the
proposed projects and to make impactful advance in this area of considerable biomedical significance.
项目概要
在染色体分离过程中,每个子细胞都会接收到完整的基因组,并且这
每次细胞分裂都会重复。因此,染色体分离必须非常准确并且
坚固以确保成年人的健康;否则,就会发生癌症等灾难。癌细胞利用
并重新连接它们的染色体分离机制,以满足不受控制的细胞分裂的永不满足的需求。
成功的化疗药物通过破坏这种必然需求来杀死癌细胞。因此,了解
染色体分离机制对人类健康具有深远影响。
着丝粒通过将染色体着丝粒连接到纺锤体来执行染色体分离
微管。这种连接必须灵活,以适应 DNA 聚合酶的短暂通过
在S期复制着丝粒;它还必须坚固,能够承受主轴的拉力
有丝分裂期间的微管。细胞暂时协调动粒的这些相反属性并调节
它们之间的过渡。因为着丝粒及其相关调节因子在生物体中高度保守
在真核生命王国中,我们将使用酿酒酵母作为主要研究生物体
研究动粒如何组装。中心假设是动粒组装是高度
涉及多个蛋白质-蛋白质和蛋白质-DNA 接触的合作过程,这些接触由细胞控制
循环信号。为了了解动粒是如何组装的,具体目标 1 将应用定量方法
蛋白质组学平台定义着丝粒组装的步骤;利用基于稳定同位素的质量
光谱法 (MS) 用于分析天然动粒以及由重组体组装的动粒
浓缩细胞提取物。两个关键接口控制着丝粒组装:第一个接口位于
着丝粒和内着丝粒,而第二个位于内着丝粒和外着丝粒之间。具体的
目标 2 将探测着丝粒-内着丝粒界面,并重点关注特定内着丝粒的磷酸化如何
着丝粒成分可能对其进行调节。具体目标 3 将剖析内外着丝粒界面并
研究其细胞周期控制,最终目标是重建保留其生理功能的动粒
特性。总而言之,这些研究旨在了解动粒是如何组装的。
了解动粒组装具有广泛的相关性,因为研究规则和方法适用于所有
集成信号以控制大分子组装的系统。我们的协作团队,装备精良
拥有跨学科的专业知识和对着丝粒生物学的共同兴趣,具有独特的资格来开展
拟议的项目并在这一具有重大生物医学意义的领域取得有影响力的进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arshad Desai其他文献
Arshad Desai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arshad Desai', 18)}}的其他基金
IDENTIFICATION OF KINETOCHORE INTERACTING PROTEINS (KNL-1/KNL-3/KNL-2)
动粒相互作用蛋白的鉴定 (KNL-1/KNL-3/KNL-2)
- 批准号:
8171385 - 财政年份:2010
- 资助金额:
$ 44.35万 - 项目类别:
IDENTIFICATION OF INTERACTING PROTEINS OF SPINDLY
Spindly 相互作用蛋白的鉴定
- 批准号:
8171402 - 财政年份:2010
- 资助金额:
$ 44.35万 - 项目类别:
IDENTIFICATION OF PHOSPHORYLATION SITES AURORA B
磷酸化位点 AURORA B 的鉴定
- 批准号:
8171401 - 财政年份:2010
- 资助金额:
$ 44.35万 - 项目类别:
ANALYSIS OF CEN DNA-MICROTUBULE ATTACHMENT IN VITRO IN BUDDING YEAST
芽殖酵母 CEN DNA-微管附着的体外分析
- 批准号:
7602213 - 财政年份:2007
- 资助金额:
$ 44.35万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 44.35万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 44.35万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 44.35万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 44.35万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 44.35万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 44.35万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 44.35万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 44.35万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 44.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 44.35万 - 项目类别:
Operating Grants














{{item.name}}会员




