Understanding hyphal branching in Fusarium venenatum to design improved strains

了解 Fusarium v​​enenatum 的菌丝分支以设计改良菌株

基本信息

项目摘要

This collaborative proposal aims to characterise branching patterns in filamentous fungi in order to provide insights into gene network function and regulation. This will not only lead to fundamental insights into the molecular mechanism of hyphal branching across many species of filamentous fungi, but will help our industrial partners improve process efficiencies, ensuring that Quorn continues to be one of the most sustainable, non-plant-based, meat alternatives on the market. In the 1950's, prior to the 'green revolution' there was serious concern about the availability of sufficient protein to feed a growing global population. Rank Hovis McDougal (RHM) began a process of searching for a single celled protein source that could be fermented using wheat starch (or derived glucose monomers). This led to the discovery of a Fusarium species, that has the correct growth properties that enabled onward processing. Later classified as Fusarium venenatum (Fv), a sister species to the wheat pathogen Fusarium graminearum, this filamentous fungus grew in a manner that had good organoleptic properties following mixture with egg albumen, forming, cooking and controlled freezing, which cause mycoprotein filaments to align as a fibre-gel composite conferring a meat-like texture .During the production of mycoprotein, spontaneous variants arise in the fermentation which branch more quickly and eventually rise to high levels in the fermentation process. These are undesirable from a food texture perspective as they lead to a crumbly, rather than a meaty texture and therefore fermentations must be terminated early, leading to less efficient production that would be possible without these colonial variants (also known as c-variants). Our previous work has sequenced 'c-variant' genomes from 19 independent fermentations and revealed a common set of genes that are mutated across c-variant isolates in different combinations. We now wish to verify which of these genes (and in what combination) are responsible for the c-variant phenotype. This will help us to understand which genes are responsible for controlling hyphal growth and branching, currently an 'unknown' in most filamentous fungi. We will validate our hypotheses about which variants are important by using a combination of machine-learning approaches which will allow us to effectively group c-variant isolates to aid with gene identification. We will look at gene expression perturbations across each mutant isolate, which in combination with 'active learning' approaches, allow us to identify the regulatory order of the gene expression network. We will, in collaboration with Marlow Foods then look to understand the order of mutational events within the fermentation process and with a combination of ultra-deep population-level genome sequencing and digital droplet PCR techniques track the dynamics of individual mutations within the commercial fermentation process. We will also ask if this mutational trajectory is dependent upon the strain which is chosen for fermentation, as it may be that the current production strain is more susceptible to hyper-branching variants than other strains. Finally, we will link together morphological growth models with gene expression networks to model the effects of different gene perturbations on the growth and branching process. This, along with other analyses will allow us to look at the robustness of the gene regulatory network and identify whether there are opportunities to improve the robustness of strains through enhanced mechanistic insight into how the hyphal growth and branching system functions and is regulated. Taken together this work will allow the rational design of new strains of mycoprotein, enhance production efficiency and ensure that scalable alternatives to meat can be sustainably produced.
这项合作计划旨在研究丝状真菌的分支模式,以深入了解基因网络的功能和调控。这不仅将导致对许多丝状真菌物种菌丝分支的分子机制的基本见解,而且将帮助我们的工业合作伙伴提高工艺效率,确保Quorn继续成为市场上最可持续的非植物性肉类替代品之一。在20世纪50年代,在“绿色革命”之前,人们严重关注是否有足够的蛋白质来养活不断增长的全球人口。Rank Hovis McDougal(RHM)开始寻找可以使用小麦淀粉(或衍生的葡萄糖单体)发酵的单细胞蛋白质来源。这导致了镰刀菌属物种的发现,该物种具有正确的生长特性,能够进行进一步的加工。后来被归类为镰刀菌venenatum(Fv),小麦病原体禾谷镰刀菌的姊妹种,这种丝状真菌在与蛋清混合、成型、烹饪和受控冷冻后以具有良好感官特性的方式生长,这导致真菌蛋白丝排列成纤维-凝胶复合物,赋予肉状质地。在真菌蛋白的生产过程中,在发酵过程中产生自发变异体,其分支更快,并最终在发酵过程中升高到高水平。从食物质地的角度来看,这些是不期望的,因为它们导致易碎的质地,而不是肉的质地,因此发酵必须提前终止,导致在没有这些菌落变体(也称为c-变体)的情况下可能的生产效率较低。我们之前的工作已经对来自19个独立发酵的“c变体”基因组进行了测序,并揭示了一组常见的基因,这些基因在不同组合的c变体分离株中发生突变。我们现在希望验证这些基因中的哪一个(以及以何种组合)负责c变异表型。这将有助于我们了解哪些基因负责控制菌丝生长和分支,目前在大多数丝状真菌中是一个“未知”。我们将通过使用机器学习方法的组合来验证我们关于哪些变体是重要的假设,这将使我们能够有效地对c变体分离株进行分组,以帮助进行基因鉴定。我们将研究每个突变分离株的基因表达扰动,结合“主动学习”方法,使我们能够确定基因表达网络的调控顺序。我们将与马洛食品公司合作,了解发酵过程中突变事件的顺序,并结合超深度群体水平基因组测序和数字液滴PCR技术来跟踪商业发酵过程中个体突变的动态。我们还将询问这种突变轨迹是否取决于选择用于发酵的菌株,因为可能是目前的生产菌株比其他菌株更容易受到超支化变体的影响。最后,我们将把形态生长模型与基因表达网络联系起来,模拟不同基因扰动对生长和分支过程的影响。这一点,沿着其他分析将使我们能够看到基因调控网络的鲁棒性,并确定是否有机会通过增强对菌丝生长和分支系统如何发挥作用和受到调控的机制的洞察来提高菌株的鲁棒性。总而言之,这项工作将允许合理设计新的真菌蛋白菌株,提高生产效率,并确保可持续生产可扩展的肉类替代品。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Harrison其他文献

関西言語学会
关西语言学会
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    高梨信乃;高梨信乃;西光義弘;實平雅夫;高梨信乃・水野マリ子・リチャードハリソン;西光義弘;高梨信乃・水野マリ子・リチャードハリソン;高梨信乃;鈴木義和・孫哲;Richard Harrison;西光義弘;西光義弘
  • 通讯作者:
    西光義弘
スリーエーネットワーク みんなの日本語中級II
3A网络大家的日语中级II
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    高梨信乃;高梨信乃;西光義弘;實平雅夫;高梨信乃・水野マリ子・リチャードハリソン;西光義弘;高梨信乃・水野マリ子・リチャードハリソン;高梨信乃;鈴木義和・孫哲;Richard Harrison;西光義弘;西光義弘;住田哲郎;Harrison;西光義弘;西光義弘;西光義弘;西光義弘;西光義弘;西光義弘;西光義弘;西光義弘;西光義弘;住田哲郎;住田哲郎;西光義弘;西光義弘;西光義弘;高梨信乃・庵功雄・中西久実子・ 前田直子
  • 通讯作者:
    高梨信乃・庵功雄・中西久実子・ 前田直子
多言語資源の開発をめざすオーストラリア-移民コミュニティ言語に関する政策をめぐって
澳大利亚旨在开发多语言资源 - 关于移民社区语言的政策
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    高梨信乃;高梨信乃;西光義弘;實平雅夫;高梨信乃・水野マリ子・リチャードハリソン;西光義弘;高梨信乃・水野マリ子・リチャードハリソン;高梨信乃;鈴木義和・孫哲;Richard Harrison;西光義弘;西光義弘;住田哲郎;Harrison;西光義弘;西光義弘;西光義弘;西光義弘;西光義弘;西光義弘;西光義弘;西光義弘;西光義弘;住田哲郎;住田哲郎;西光義弘;西光義弘;西光義弘;高梨信乃・庵功雄・中西久実子・ 前田直子;藤田耕司・松本マスミ・児玉一宏・谷口一美;高梨信乃・庵功雄・中西久実子・ 前田直子;藤田耕司・松本マスミ・児玉一宏・谷口一美 編;高梨信乃;松田 陽子
  • 通讯作者:
    松田 陽子
多言語主義・多言語教育を問う
质疑多语言和多语言教育
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    高梨信乃;高梨信乃;西光義弘;實平雅夫;高梨信乃・水野マリ子・リチャードハリソン;西光義弘;高梨信乃・水野マリ子・リチャードハリソン;高梨信乃;鈴木義和・孫哲;Richard Harrison;西光義弘;西光義弘;住田哲郎;Harrison;西光義弘;西光義弘;西光義弘;西光義弘;西光義弘;西光義弘;西光義弘;西光義弘;西光義弘;住田哲郎;住田哲郎;西光義弘;西光義弘;西光義弘;高梨信乃・庵功雄・中西久実子・ 前田直子;藤田耕司・松本マスミ・児玉一宏・谷口一美;高梨信乃・庵功雄・中西久実子・ 前田直子;藤田耕司・松本マスミ・児玉一宏・谷口一美 編;高梨信乃;松田 陽子;松田陽子;野津 隆志;乾 美紀;野津隆志;乾美紀;野津 隆志;松田 陽子
  • 通讯作者:
    松田 陽子
Natural ventilation effects on temperatures within Stevenson screens
自然通风对史蒂文森屏内温度的影响

Richard Harrison的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Harrison', 18)}}的其他基金

Identification and quantification of complex plant pathogens within heterogenous samples harnessing single molecule sequencing
利用单分子测序对异质样品中复杂的植物病原体进行鉴定和定量
  • 批准号:
    BB/V017608/1
  • 财政年份:
    2021
  • 资助金额:
    $ 95.38万
  • 项目类别:
    Research Grant
Predicting the emergence of host-adapted bacterial phytopathogens
预测适应宿主的细菌植物病原体的出现
  • 批准号:
    BB/T010746/1
  • 财政年份:
    2020
  • 资助金额:
    $ 95.38万
  • 项目类别:
    Research Grant
How do light and temperature affect lifecycle, development and pathogenicity in Verticillium?
光和温度如何影响黄萎病的生命周期、发育和致病性?
  • 批准号:
    BB/R00935X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 95.38万
  • 项目类别:
    Research Grant
An evolutionary approach to develop durable disease resistance to bacterial canker of cherry
一种进化方法来培养对樱桃细菌性溃疡病的持久抗病性
  • 批准号:
    BB/P006272/1
  • 财政年份:
    2017
  • 资助金额:
    $ 95.38万
  • 项目类别:
    Research Grant
Mycoprotein 2.0
菌蛋白2.0
  • 批准号:
    BB/P020364/1
  • 财政年份:
    2017
  • 资助金额:
    $ 95.38万
  • 项目类别:
    Research Grant
The quest for primary magnetisation in Earth's oldest materials
寻找地球最古老材料的初级磁化强度
  • 批准号:
    NE/P002498/1
  • 财政年份:
    2017
  • 资助金额:
    $ 95.38万
  • 项目类别:
    Research Grant
The nature of resistance to Neonectria ditissima in apple species
苹果品种对新克霉的抗性性质
  • 批准号:
    BB/P000851/1
  • 财政年份:
    2017
  • 资助金额:
    $ 95.38万
  • 项目类别:
    Research Grant
IDRIS- Improving Disease Resistance In Strawberry
IDRIS——提高草莓的抗病能力
  • 批准号:
    BB/K017071/2
  • 财政年份:
    2016
  • 资助金额:
    $ 95.38万
  • 项目类别:
    Research Grant
Exploiting next generation sequencing technologies to understand pathogenicity and resistance in Fusarium oxysporum
利用下一代测序技术了解尖孢镰刀菌的致病性和抗性
  • 批准号:
    BB/K020730/2
  • 财政年份:
    2016
  • 资助金额:
    $ 95.38万
  • 项目类别:
    Research Grant
A UK-China partnership to understand the genetic architecture of the Colletotrichum gloeosporoides - Fragaria x ananassa interaction
英中合作了解胶孢炭疽病菌 - 草莓 x ananassa 相互作用的遗传结构
  • 批准号:
    BB/N022289/1
  • 财政年份:
    2016
  • 资助金额:
    $ 95.38万
  • 项目类别:
    Research Grant

相似海外基金

Measurement of the mycorrhizal hyphal turnover through soil imaging: Resolving the image analysis bottleneck with AI
通过土壤成像测量菌根菌丝周转:利用人工智能解决图像分析瓶颈
  • 批准号:
    22K20595
  • 财政年份:
    2022
  • 资助金额:
    $ 95.38万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Construction of hyphal network in host plant and pathogenicity in ear-infecting fungus
寄主植物菌丝网络的构建及耳部感染真菌的致病性
  • 批准号:
    22K05647
  • 财政年份:
    2022
  • 资助金额:
    $ 95.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Signal sensing, hyphal development and pathognesis of Candida albicans
白色念珠菌的信号传感、菌丝发育和发病机制
  • 批准号:
    10390180
  • 财政年份:
    2021
  • 资助金额:
    $ 95.38万
  • 项目类别:
Calcineurin regulatory network control of Aspergillus fumigatus hyphal septation
钙调神经磷酸酶调控网络控制烟曲霉菌丝分隔
  • 批准号:
    10540607
  • 财政年份:
    2021
  • 资助金额:
    $ 95.38万
  • 项目类别:
High-frequency measurement of the mycorrhizal hyphal production and decomposition proce ss in forests
森林菌根菌丝产生和分解过程的高频测量
  • 批准号:
    21F21097
  • 财政年份:
    2021
  • 资助金额:
    $ 95.38万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
High-frequency measurement of the mycorrhizal hyphal production and decomposition process in forests
森林菌根菌丝产生和分解过程的高频测量
  • 批准号:
    21K14877
  • 财政年份:
    2021
  • 资助金额:
    $ 95.38万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Calcineurin regulatory network control of Aspergillus fumigatus hyphal septation
钙调神经磷酸酶调控网络控制烟曲霉菌丝分隔
  • 批准号:
    10283247
  • 财政年份:
    2021
  • 资助金额:
    $ 95.38万
  • 项目类别:
Development of Antifungal Natural products and their Derivatives with Anti-hyphal Activity against Candida albicans
具有抗白色念珠菌菌丝活性的抗真菌天然产物及其衍生物的开发
  • 批准号:
    20K16029
  • 财政年份:
    2020
  • 资助金额:
    $ 95.38万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of the methods for hyphal dispersion of Aspergillus hyphae by controlling the surface adhesive molecules
通过控制表面粘附分子开发曲霉菌丝菌丝分散方法
  • 批准号:
    20K22773
  • 财政年份:
    2020
  • 资助金额:
    $ 95.38万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Molecular mechanism of hyphal aggregation evoked by cell-surface polysaccharides in filamentous fungi.
丝状真菌细胞表面多糖引起菌丝聚集的分子机制。
  • 批准号:
    20H02895
  • 财政年份:
    2020
  • 资助金额:
    $ 95.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了