Investigating inorganic carbon transport in globally important algal lineages

研究全球重要藻类谱系中的无机碳传输

基本信息

  • 批准号:
    BB/W009587/1
  • 负责人:
  • 金额:
    $ 51.8万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Algae are responsible for up to 30% of all global photosynthesis, the process whereby light and CO2 are converted into O2 and chemical energy, in the form of sugars. This process provides energy for the bottom of the global food web, produces the O2 we breathe and plays an important role in removing the greenhouse gas CO2 from the atmosphere. Algae have evolved a mechanism to boost their photosynthesis making it very efficient, this mechanism is known as the CO2 concentrating mechanism (CCM). The CCM functions by taking up both CO2 and HCO3- from the environment to fuel photosynthesis. Algae take up HCO3- as well as the necessary CO2 because: (1) it can easily be converted to the CO2 needed for photosynthesis; (2) it is more readily available than CO2 in the aquatic environments algae live in; and (3) it doesn't leak out the cell like CO2 is prone to. The HCO3- is transported through the algal cell to a compartment called the thylakoid, which is found in the chloroplast and is where the photosynthetic process occurs. In the thylakoid the HCO3- is converted to CO2. The CO2 then is readily available for an enzyme called Rubisco which uses it to drive the photosynthesis process. Although we know HCO3- transport is very important in the CCM, until now we did not know how it travelled into the thylakoid to be converted to CO2. My research has recently identified a protein channel that enables HCO3- transport into the thylakoid in a species of algae called Chlamydomonas reinhardtii. I have also identified similar protein channels in other environmentally important groups of algae. I hypothesise that these similar protein channels may be a shared mechanism of HCO3- transport across algal groups. The Fellowship research I have proposed will extensively investigate these potential HCO3- channels in different algal groups to fully understand their function. Many algae have a CCM, but we know there are differences in the specific mechanism between different groups. Therefore, it is important to explore CCM components, like HCO3- channels, in different groups to be able to inform the research community accurately on the shared components in the algal CCM. This research is important because it strengthens our understanding of a process responsible for approximately a third of all global photosynthesis, influencing all life on Earth. The data generated in this project also helps researchers I collaborate with closely who are attempting to engineer a CCM into crop plants. If the CCM is successfully inserted into crop plants, it has been modelled to significantly increase photosynthetic efficiency and therefore increase crop yields by up to 60%. This yield increase could directly alleviate issues surrounding global food supply which have been increasing as a result of population increase and climate change.
藻类占全球光合作用的30%,光合作用是光和二氧化碳以糖的形式转化为氧气和化学能的过程。这一过程为全球食物网的底层提供能量,产生我们呼吸的氧气,并在从大气中去除温室气体二氧化碳方面发挥重要作用。藻类已经进化出一种机制来提高光合作用的效率,这种机制被称为二氧化碳浓缩机制(CCM)。CCM通过从环境中吸收二氧化碳和HCO3-来促进光合作用。藻类吸收HCO3和必要的二氧化碳,因为:(1)它可以很容易地转化为光合作用所需的二氧化碳;(2)在藻类生存的水生环境中,它比二氧化碳更容易获得;(3)它不会像二氧化碳那样泄漏出细胞。HCO3-通过藻类细胞被运送到一个叫做类囊体的隔室,它存在于叶绿体中,是光合作用过程发生的地方。在类囊体中,HCO3-转化为CO2。然后,二氧化碳很容易被一种叫做Rubisco的酶所利用,这种酶利用它来驱动光合作用过程。虽然我们知道HCO3-运输在CCM中非常重要,但直到现在我们还不知道它是如何进入类囊体转化为二氧化碳的。我的研究最近在一种叫做莱茵衣藻的藻类中发现了一种蛋白质通道,可以使HCO3-运输到类囊体中。我还在其他对环境重要的藻类群体中发现了类似的蛋白质通道。我假设这些相似的蛋白质通道可能是藻类群间HCO3-运输的共享机制。我提出的奖学金研究将广泛研究不同藻类群中这些潜在的HCO3-通道,以充分了解它们的功能。许多藻类都有CCM,但我们知道不同群体之间的具体机制存在差异。因此,探索不同群体的CCM组分,如HCO3-通道,以便能够准确地告知研究界藻类CCM中的共享组分是非常重要的。这项研究很重要,因为它加强了我们对全球约三分之一的光合作用过程的理解,这个过程影响着地球上的所有生命。在这个项目中产生的数据也有助于与我密切合作的研究人员,他们正试图将CCM设计到农作物中。如果成功地将CCM植入作物植物中,它将显著提高光合效率,从而使作物产量提高高达60%。这种产量的增加可以直接缓解由于人口增长和气候变化而不断增加的全球粮食供应问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charlotte Elizabeth Walker其他文献

Charlotte Elizabeth Walker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Defining the role of phosphatidic acid as an allosteric regulator of mitochondrial glutaminase
定义磷脂酸作为线粒体谷氨酰胺酶变构调节剂的作用
  • 批准号:
    10639525
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
Development, Elucidation, and Application of New Principles in Stereoselective Catalysis
立体选择性催化新原理的开发、阐明和应用
  • 批准号:
    10622995
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
Genetic mechanisms of signal integration in the nutrient sensing network
营养传感网络中信号整合的遗传机制
  • 批准号:
    10710987
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
Ultra-Low-Cost and Highly-Stable Perovskite Solar Cells Based on Inorganic-Carbon Materials
基于无机碳材料的超低成本、高稳定性钙钛矿太阳能电池
  • 批准号:
    23KJ1175
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Optimization of a carbon monoxide (CO) sensing hemoprotein for applications as an antidote for CO poisoning and a biosensor for CO detection in living cells
优化一氧化碳 (CO) 传感血红蛋白作为 CO 中毒解毒剂的应用和用于活细胞中 CO 检测的生物传感器
  • 批准号:
    10643257
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
Role for gluconeogenic enzyme FBP1 in T cell activation
糖异生酶 FBP1 在 T 细胞激活中的作用
  • 批准号:
    10554289
  • 财政年份:
    2022
  • 资助金额:
    $ 51.8万
  • 项目类别:
US GEOTRACES GP17-OCE and GP17-ANT: Inorganic Carbon Cycling in the South Pacific and Southern Oceans by Direct Measurement
美国 GEOTRACES GP17-OCE 和 GP17-ANT:通过直接测量南太平洋和南大洋的无机碳循环
  • 批准号:
    2148468
  • 财政年份:
    2022
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Continuing Grant
Role for gluconeogenic enzyme FBP1 in T cell activation
糖异生酶 FBP1 在 T 细胞激活中的作用
  • 批准号:
    10433367
  • 财政年份:
    2022
  • 资助金额:
    $ 51.8万
  • 项目类别:
Developing a Reagentless In situ Sensor for Measurements of Dissolved Inorganic Carbon in Seawater
开发用于测量海水中溶解无机碳的无试剂原位传感器
  • 批准号:
    2221931
  • 财政年份:
    2022
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Continuing Grant
Isotopic Composition and Cycling of Dissolved Organic and Inorganic Carbon in the Canadian Arctic Ocean
加拿大北冰洋溶解有机碳和无机碳的同位素组成和循环
  • 批准号:
    575783-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了