Genetic mechanisms of signal integration in the nutrient sensing network
营养传感网络中信号整合的遗传机制
基本信息
- 批准号:10710987
- 负责人:
- 金额:$ 38.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-25 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:CarbonCellsCessation of lifeComplexDiabetes MellitusDiseaseDistantEnzymesEukaryotaEukaryotic CellFungi ModelFutureGenesGeneticHumanKnowledgeLipidsMalignant NeoplasmsMeasurableMediatingMetabolic DiseasesMetabolismMicrobeMoldsNeurospora crassaNitrogenNon-Insulin-Dependent Diabetes MellitusNutrientNutrient availabilityObesityOrganismOutputPathway interactionsPhenotypePhosphotransferasesPlayRegulationRoleSaccharomyces cerevisiaeSignal PathwaySignal TransductionSourceStimulusStressSystems BiologyTherapeuticWorkYeast Model SystemYeastsdetection of nutrientfunctional genomicsfungusgene conservationgenomic toolsinnovationinorganic phosphatemodel organismmultiple omicsnew therapeutic targetnovelp38 Mitogen Activated Protein Kinaserapid growthresponsetherapeutic targettooltumor growthtumor progression
项目摘要
PROJECT SUMMARY
Eukaryotes have evolved complex signaling networks that assess internal energy and nutrient stores and
respond to the available nutrients. In humans, inaccurate nutrient sensing can result in type II diabetes and
obesity. Unfortunately, the therapeutic targets available to treat these diseases are limited. Cancer progression
is promoted by changes in metabolism, since rapid growth of tumors is mediated by dysregulation of carbon,
nitrogen, and phosphate utilization. A key knowledge gap is understanding how eukaryotic cells distinguish
between available nutrients and integrate signals from diverse nutrient sensing pathways. Filling this gap may
identify targets for future diabetes, obesity, or cancer therapeutics. Many nutrient sensing pathways used as
therapeutic targets in humans were originally identified in eukaryotic microbes. However, much of this work
focused on the model yeast Saccharomyces cerevisiae, which has a limited nutrient utilization repertoire.
Eukaryotic microbes that utilize a more diverse set of nutrients employ additional mechanisms of nutrient
sensing conserved in humans. To characterize novel conserved nutrient sensing regulatory mechanisms, this
project focuses on defining the nutrient sensing network by investigating genes that integrate signaling
pathways and distinguish between nutrient sources in eukaryotic microbes with unique phenotypic outputs. In
response to available nutrients, the filamentous fungus Neurospora crassa exquisitely tailors the regulation of
secreted enzymes with easily measurable activity. The oleaginous yeast Rhodosporidium toruloides
accumulates lipids when carbon is abundant and nitrogen or phosphate limiting. To investigate how signaling
networks are integrated, this project will use the easily scorable phenotypes of these two atypical model fungi
to focus on two questions: (1) the mechanism by which signals are integrated between nutrient sensing
pathways and the p38 mitogen activated protein kinase pathway, which regulates both nutrient utilization and
stress, to achieve downstream responses specific to differing stimuli; and (2) the genetic mechanisms that
integrate signals from carbon, nitrogen, and phosphate pathways. Many conserved pathways that regulate
nutrient utilization in humans play an important role in fungi, especially when cells must distinguish between
preferred and nonpreferred nutrients. This project will characterize conserved genes, including three highly
conserved kinases, that play a role in distinguishing between available nutrients in eukaryotic microbes. An
innovative aspect of this project is using powerful genomic tools, including high-throughput functional genomics
and multi-omics, in understudied eukaryotic microbe model organisms with substantial nutrient utilization
repertoires. Working in these two distantly related organisms will identify conserved genes that may be
important for nutrient sensing throughout eukaryotic species and serve as novel targets to treat metabolic
diseases in humans. Conversely, regulatory mechanisms specific to one species may serve as therapeutic
targets to mitigate deaths from fungal disease.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lori B Huberman其他文献
Lori B Huberman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lori B Huberman', 18)}}的其他基金
Discovering the xylan-sensing pathway in the filamentous fungus Neurospora crassa
发现丝状真菌粗糙脉孢菌中的木聚糖传感途径
- 批准号:
9039464 - 财政年份:2015
- 资助金额:
$ 38.4万 - 项目类别:
相似国自然基金
时空分辨核酸生物传感在亚细胞水平光电双模态精准测量
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
犬尿氨酸通过AhR/STAT3轴活化粒细胞样MDSCs促进慢性肾脏病心脏纤维化的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
γδT助推CD8+T细胞在放免联合远隔效应的抗瘤机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
CK201通过CD36调控肝细胞脂肪酸代谢重编程抑制高脂饮食诱导肝脏脂肪变性的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cebpb调控CD177+中性粒样单核细胞产生METs促进肺移植缺血再灌注损伤的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
小胶质细胞通过FABP5/LXR/SREBP1轴介导的吞噬功能障碍加剧阿尔茨海默病Aβ病理的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于多重时序液滴数字CRISPR的肺癌单个小细胞外囊泡miRNAs多靶标灵敏检测新方法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
RhoA通过FoxG1-cyclinD1促进表皮干细胞增殖的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
RNA结合蛋白PTBP1调控UCP2抑制滋养层细胞氧化应激在子痫前期中的作用及分子机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
功能化破骨前体细胞膜递送双siRNA协同调控骨免疫和骨稳态改善骨质疏松的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Investigating bioengineering approaches to produce immuno-modulatory mesenchymal stromal cells and their extracellular vesicle
研究生产免疫调节间充质基质细胞及其细胞外囊泡的生物工程方法
- 批准号:
2608627 - 财政年份:2025
- 资助金额:
$ 38.4万 - 项目类别:
Studentship
根での内外的傷害の初動対処となる新規の傷害防衛戦略"Cellsロック"
“细胞锁”是一种新的损伤防御策略,从根源上对内伤和外伤进行初步反应。
- 批准号:
24KJ2131 - 财政年份:2024
- 资助金额:
$ 38.4万 - 项目类别:
Grant-in-Aid for JSPS Fellows
SBIR Phase I: Industrial-Scale Technology for Drug Development in Mature Human Fat Cells
SBIR 第一阶段:成熟人类脂肪细胞药物开发的工业规模技术
- 批准号:
2322443 - 财政年份:2024
- 资助金额:
$ 38.4万 - 项目类别:
Standard Grant
CAREER: Understanding how hierarchical organization of growth plate stem cells controls skeletal growth
职业:了解生长板干细胞的分层组织如何控制骨骼生长
- 批准号:
2339761 - 财政年份:2024
- 资助金额:
$ 38.4万 - 项目类别:
Continuing Grant
Recyclable, smart and highly efficient wire-shaped solar cells waved portable/wearable electronics
可回收、智能、高效的线形太阳能电池挥舞着便携式/可穿戴电子产品
- 批准号:
24K15389 - 财政年份:2024
- 资助金额:
$ 38.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
- 批准号:
DP240100465 - 财政年份:2024
- 资助金额:
$ 38.4万 - 项目类别:
Discovery Projects
Dissecting the heterogeniety of human tissue-resident memory T cells
剖析人体组织驻留记忆 T 细胞的异质性
- 批准号:
DE240101101 - 财政年份:2024
- 资助金额:
$ 38.4万 - 项目类别:
Discovery Early Career Researcher Award
Roles of immune cells derived from clonal hematopoiesis in B-cell lymphomas
克隆造血来源的免疫细胞在 B 细胞淋巴瘤中的作用
- 批准号:
24K19213 - 财政年份:2024
- 资助金额:
$ 38.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
MARVEL-ous Extracellular vesicles carry RXLR effectors into host plant cells
MARVEL-ous 细胞外囊泡携带 RXLR 效应子进入宿主植物细胞
- 批准号:
BB/Y002067/1 - 财政年份:2024
- 资助金额:
$ 38.4万 - 项目类别:
Research Grant
Interplay of the extracellular matrix and immune cells in lung pathology: key role for chitinase-like proteins
肺病理学中细胞外基质和免疫细胞的相互作用:几丁质酶样蛋白的关键作用
- 批准号:
MR/Y003683/1 - 财政年份:2024
- 资助金额:
$ 38.4万 - 项目类别:
Research Grant