Linking adaptive evolution and reproductive barriers in budding yeasts

将芽殖酵母的适应性进化和繁殖障碍联系起来

基本信息

  • 批准号:
    BB/W009951/1
  • 负责人:
  • 金额:
    $ 49.34万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

How species form is a fundamental question in biology. While species are often thought of as discrete categories, this is not always the case. Reproductive barriers prevent species from being able to make fit offspring, and they are the main mechanism that keeps species distinct. For example, donkeys and horses can mate to produce mules, a hybrid between the two, but mules are sterile and cannot produce offspring themselves. This sterility is a reproductive barrier because the mules are a "dead end" - they are not able to pass on their genes any further. Sometimes hybrids can survive and reproduce, and their offspring can be highly variable. The results can be positive, allowing species to survive extreme conditions or optimising a desirable trait for agriculture or biotechnological processes. Conversely, it can allow new diseases to emerge. Climate change, leading to unstable environmental conditions, increases the likelihood of such hybridisation events to occur. I aim to understand the factors contributing to reproductive barriers and hybridization, and why these factors exist. There are two main types of reproductive barriers: extrinsic, resulting from the organisms' interactions with the environment, and intrinsic, resulting from the organisms themselves. It is unknown whether extrinsic and intrinsic barriers often have the same underlying causes, and this is what I want to find out. I will harness the power of a well-established model organism, the microbial yeast Saccharomyces cerevisiae and its close relatives. These yeasts are best known for their role in biotechnology, including beer and wine fermentation, but they are also well-studied and easy to manipulate in the lab. To understand reproductive barriers in these yeasts, I will use three species that have different optimal growth temperatures (extrinsic barrier). Hybrids between these species can grow, but are largely sterile (intrinsic barrier). I will determine the genetic reasons for these two barriers to see if they are the same. First, I will find the genes responsible for growth in different temperatures. Beyond informing us about extrinsic barriers, these genes will be useful for the development of biotechnology, where optimizing growth at certain temperatures can be critical. Second, I will determine regions of the genome responsible for hybrid sterility. These types of regions are expected to be important for the existence of species of all kinds, but there are few known examples. I will then determine whether the same genes are involved in both response to temperature and hybrid sterility, and make connections between factors that underlie the existence of biological species.This research will be carried out at the University of Exeter, a centre of excellence for studying microbial evolution. I will be embedded in a highly collaborative research environment, sharing laboratory space and resources with world-renowned experts from highly relevant disciplines. To broaden the impacts of my research, I will also be supported by a world-class group of researchers in Exeter who study fungal pathogens. Finally, I will collaborate with international colleagues Dr Gianni Liti (France), an expert on methods for determining the genes underlying complex traits, and Prof Sarah Otto (Canada), a world expert on mathematical modelling of evolutionary biology. Climate change is a UN recognized global emergency that transcends borders. Understanding how organisms respond to changing climate, especially newly created hybrids, can impact agriculture and health through understanding of emerging fungal pathogens. By integrating information between molecular and evolutionary biology, I will advance the frontiers of bioscience discovery.
物种如何形成是生物学中的一个基本问题。虽然物种通常被认为是离散的类别,但情况并非总是如此。繁殖障碍阻止物种能够产生合适的后代,它们是保持物种独特性的主要机制。例如,驴和马可以交配产生骡子,这是两者之间的杂交种,但骡子是不育的,不能生育后代。这种不育性是一种生殖障碍,因为骡子是一条“死胡同”--它们不能再把自己的基因传递下去。有时候杂交种可以生存和繁殖,它们的后代可能是高度可变的。结果可能是积极的,允许物种在极端条件下生存,或优化农业或生物技术过程的理想性状。相反,它可能会导致新的疾病出现。气候变化导致不稳定的环境条件,增加了这种杂交事件发生的可能性。我的目标是了解导致生殖障碍和杂交的因素,以及为什么这些因素存在。生殖障碍主要有两种类型:外在的,由生物体与环境的相互作用产生;内在的,由生物体本身产生。外在和内在的障碍是否有相同的潜在原因,这是未知的,这就是我想找出的。我将利用一个成熟的模式生物的力量,微生物酵母酿酒酵母及其近亲。这些酵母以其在生物技术中的作用而闻名,包括啤酒和葡萄酒发酵,但它们也被充分研究,易于在实验室中操作。为了了解这些酵母的繁殖障碍,我将使用三种具有不同最佳生长温度的物种(外在障碍)。这些物种之间的杂交可以生长,但基本上是不育的(内在屏障)。我将确定这两种障碍的遗传原因,看看它们是否相同。首先,我将找到在不同温度下负责生长的基因。除了告诉我们外在的障碍,这些基因将有助于生物技术的发展,在某些温度下优化生长可能至关重要。其次,我将确定基因组中负责杂种不育的区域。这些类型的区域预计对所有种类的物种的存在都很重要,但已知的例子很少。然后我将确定是否相同的基因参与了对温度和杂交不育的反应,并在生物物种存在的基础因素之间建立联系。这项研究将在埃克塞特大学进行,这是一个研究微生物进化的卓越中心。我将被嵌入一个高度协作的研究环境,与来自高度相关学科的世界知名专家共享实验室空间和资源。为了扩大我的研究的影响,我还将得到埃克塞特研究真菌病原体的世界级研究人员的支持。最后,我将与国际同事Gianni Liti博士(法国),一位确定复杂性状基因方法的专家,以及Sarah Otto教授(加拿大),一位进化生物学数学建模的世界专家合作。气候变化是联合国公认的超越国界的全球紧急情况。了解生物体如何应对气候变化,特别是新创造的杂交种,可以通过了解新出现的真菌病原体来影响农业和健康。通过整合分子生物学和进化生物学之间的信息,我将推进生物科学发现的前沿。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jasmine Ono其他文献

Genetics of adaptation in experimental populations of yeast
  • DOI:
    10.14288/1.0362398
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jasmine Ono
  • 通讯作者:
    Jasmine Ono
Transcriptome evolution in black cottonwood (Populus trichocarpa)
黑杨(Populus trichocarpa)的转录组进化
Breaking a species barrier by enabling hybrid recombination
通过实现杂交重组打破物种障碍
  • DOI:
    10.2139/ssrn.3696771
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    G. Bozdag;Jasmine Ono;J. Denton;E. Karakoç;N. Hunter;Jun;D. Greig
  • 通讯作者:
    D. Greig
Spore-autonomous fluorescent protein expression identifies meiotic chromosome mis-segregation as the principal cause of hybrid sterility in yeast
孢子自主荧光蛋白表达确定减数分裂染色体错误分离是酵母杂交不育的主要原因
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    D. W. Rogers;Ellen McConnell;Jasmine Ono;D. Greig
  • 通讯作者:
    D. Greig

Jasmine Ono的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jasmine Ono', 18)}}的其他基金

Evolution of hybrid fungal pathogens in response to temperature
杂种真菌病原体对温度的响应的进化
  • 批准号:
    BB/X018458/1
  • 财政年份:
    2023
  • 资助金额:
    $ 49.34万
  • 项目类别:
    Research Grant

相似国自然基金

下一代无线通信系统自适应调制技术及跨层设计研究
  • 批准号:
    60802033
  • 批准年份:
    2008
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
由蝙蝠耳轮和鼻叶推导新型仿生自适应波束模型的研究
  • 批准号:
    10774092
  • 批准年份:
    2007
  • 资助金额:
    39.0 万元
  • 项目类别:
    面上项目

相似海外基金

Directed and adaptive evolution of photosynthetic systems
光合系统的定向和适应性进化
  • 批准号:
    MR/Y011635/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.34万
  • 项目类别:
    Fellowship
Doctoral Dissertation Research: The Evolution of Locomotor Specializations in the Context of Adaptive Plasticity
博士论文研究:自适应可塑性背景下运动专业化的演变
  • 批准号:
    2341351
  • 财政年份:
    2024
  • 资助金额:
    $ 49.34万
  • 项目类别:
    Standard Grant
Transition: Metabolomics-driven understanding of rules that coordinate metabolic responses and adaptive evolution of synthetic biology chassis
转变:代谢组学驱动的对协调代谢反应和合成生物学底盘适应性进化的规则的理解
  • 批准号:
    2320104
  • 财政年份:
    2023
  • 资助金额:
    $ 49.34万
  • 项目类别:
    Standard Grant
Collaborative Research: Hidden Dimensions of Diversity in Woodland Salamanders: Investigating Ecophysiological Evolution in a Classic Non-Adaptive Radiation
合作研究:林地蝾螈多样性的隐藏维度:研究经典非适应性辐射中的生态生理进化
  • 批准号:
    2403865
  • 财政年份:
    2023
  • 资助金额:
    $ 49.34万
  • 项目类别:
    Continuing Grant
Adaptive evolution of sea stars in the hadal zone
超深渊带海星的适应性演化
  • 批准号:
    23KJ0746
  • 财政年份:
    2023
  • 资助金额:
    $ 49.34万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Single-cell Proteogenomic profiling of HIV-1 reservoir cells
HIV-1 储存细胞的单细胞蛋白质组学分析
  • 批准号:
    10675812
  • 财政年份:
    2023
  • 资助金额:
    $ 49.34万
  • 项目类别:
CAREER: How do mixotroph phenotypic plasticity and adaptive evolution constrain climate feedbacks?
职业:混合营养表型可塑性和适应性进化如何限制气候反馈?
  • 批准号:
    2237017
  • 财政年份:
    2023
  • 资助金额:
    $ 49.34万
  • 项目类别:
    Continuing Grant
Unraveling the adaptive evolution of gut microbes through a novel metabolic pathway of a saccharide composing of host derived-mucin glycan
通过由宿主衍生的粘蛋白聚糖组成的糖类的新代谢途径揭示肠道微生物的适应性进化
  • 批准号:
    23KJ1259
  • 财政年份:
    2023
  • 资助金额:
    $ 49.34万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Fractionated photoimmunotherapy to harness low-dose immunostimulation in ovarian cancer
分段光免疫疗法利用低剂量免疫刺激治疗卵巢癌
  • 批准号:
    10662778
  • 财政年份:
    2023
  • 资助金额:
    $ 49.34万
  • 项目类别:
Intravitreal gene therapy for inherited retinal disease
遗传性视网膜疾病的玻璃体内基因治疗
  • 批准号:
    10660784
  • 财政年份:
    2023
  • 资助金额:
    $ 49.34万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了