Integrated biological approaches for high-grade biomethane vehicle fuel production from food waste

利用食物垃圾生产高级生物甲烷汽车燃料的综合生物方法

基本信息

  • 批准号:
    BB/W010712/1
  • 负责人:
  • 金额:
    $ 51.78万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

The world is currently in a state of climate change crisis, due to the release of gases that harm the environment, known as greenhouse gases (GHG), primarily carbon dioxide (CO2) and methane (CH4). To address the climate crisis at the national level, the UK government has set a target called Net Zero, to eliminate all GHG emissions arising from UK-based production and consumption processes by the year 2050. Achieving Net Zero will require extended research into ready-to-use clean energy processes, such as anaerobic digestion (AD), especially within the transport sector; which is presently the largest single-source contributor to GHG emissions in the UK. AD involves the breakdown of organic materials in the absence of oxygen to produce gas (biogas) composed of 50-70% CH4 and 30-50% CO2 that is commonly used for electricity generation. However, only the CH4 fraction of biogas produces energy, hence, biogas can be upgraded to contain over 95% methane (biomethane), which will further reduce the GHG footprint from biogas use and also make it a suitable replacement for conventional transport fuel such as petrol and diesel. But, the common methods used to upgrade biogas to biomethane are often associated with high energy demand, additional waste generation and the potential release of the trapped CO2, which reduces the overall energy yield and GHG reduction potential of biomethane.A novel alternative is to enhance a key reaction that occurs during AD, i.e - hydrogen (H2)/CO2 conversion to CH4 by the addition of H2 to the AD process, known as biomethanation. In-vessel biomethanation (in-situ biomethanation) for the production of high-grade CH4 is relatively underdeveloped for FW AD. From previous research, I developed evidence that in-situ biomethanation can be integrated into FW AD with the potential of generating up to 65% and 59% increases in energy returns on investment (EROI) and carbon savings respectively, compared to the common biogas upgrade methods. However, a major drawback with the integration of this technology is the source of H2. Water electrolysis using excess energy from other renewable sources such as wind and solar has been proposed as an ideal H2 source. Because of the distance between respective renewable energy installations, the transportation of surplus energy from the source of production to the AD plant is still a challenge. Presently, only 2 FW AD plants upgrade biogas to biomethane (by common methods) in the UK. With the BBSRC Discovery Fellowship, I can fully exploit the potentials of FW AD to produce high-grade biomethane as a replacement for vehicle fuels. The overall aim of this project is to recover high-grade biomethane from the AD of FW using integrated biological approaches that will achieve higher GHG savings, energy and economic returns on investment, and zero-waste production. The novelty of the proposed research includes the use of fungi to break down the difficult-to-digest fraction of FW to glucose, which will allow an enhanced production of H2 and the use of the H2 to support biogas upgrade to high-grade biomethane, thus, avoiding dependence on the common biogas upgrade methods or external H2 sources. The proposed research will also include a critical assessment of the water demand and use efficiency for FW AD plants in the UK. This project will include experimental, analytical and process modelling approaches to establish the potential for the commercial exploitation of the academic innovation developed at the University of Leeds by the industrial partner, Olleco.This research meets the BBSRC remit requirement within the bioenergy strategic area, which focuses on using biological methods to generate new replacement fuels for a greener, sustainable future. It also aligns with a core component of the bio-economy, which involves the deployment of bioenergy within the UK with the potential to lead to job creation, economic growth, and enhance energy security.
由于温室气体(GHG)的排放,世界目前正处于气候变化危机的状态,温室气体主要是二氧化碳(CO2)和甲烷(CH4)。为了在国家层面解决气候危机,英国政府设定了一个名为净零的目标,到2050年消除英国生产和消费过程中产生的所有温室气体排放。要实现净零排放,将需要对可随时使用的清洁能源过程进行深入研究,如厌氧消化(AD),特别是在运输部门;该部门目前是英国温室气体排放的最大单一来源。AD包括在没有氧气的情况下分解有机物质,产生由50-70%的CH4和30-50%的二氧化碳组成的气体(沼气),这些气体通常用于发电。然而,沼气中只有CH4部分产生能量,因此,沼气可以升级到含有95%以上的甲烷(生物甲烷),这将进一步减少沼气使用所产生的温室气体足迹,并使其成为汽油和柴油等传统运输燃料的合适替代品。但是,通常用于将沼气升级为生物甲烷的方法往往伴随着高能量需求、额外的废物产生和捕获的二氧化碳的潜在释放,这降低了生物甲烷的总能量产率和温室气体减排潜力。一种新的替代方法是通过在AD过程中添加H2来加强AD过程中发生的关键反应,即氢(H2)/CO2转化为CH4,称为生物甲基化。对于FW AD来说,用于生产高品位甲烷的容器内生物甲基化(原位生物甲基化)相对较不发达。从之前的研究中,我发现了现场生物甲基化可以整合到FW AD中的证据,与常见的沼气升级方法相比,潜在的能源投资回报(EROI)和碳节约分别增加了65%和59%。然而,集成这项技术的一个主要缺点是氢气的来源。利用风能和太阳能等其他可再生能源的过剩能量进行电解水已被认为是一种理想的氢气来源。由于各自可再生能源装置之间的距离,将剩余能源从生产源输送到AD工厂仍然是一个挑战。目前,在英国只有2家FW AD工厂将沼气升级为生物甲烷(通过常见方法)。有了BBSRC发现奖学金,我可以充分开发FW AD的潜力,生产高级生物甲烷作为汽车燃料的替代品。该项目的总体目标是使用综合生物方法从燃料垃圾的AD中回收高级生物甲烷,以实现更高的温室气体节约、能源和投资经济效益以及零废物生产。拟议研究的新颖性包括使用真菌将FW中难以消化的部分分解为葡萄糖,这将允许提高H2的产量,并使用H2支持沼气升级为高级生物甲烷,从而避免依赖常见的沼气升级方法或外部氢源。拟议的研究还将包括对英国FW AD工厂的用水需求和使用效率进行关键评估。该项目将包括实验、分析和过程建模方法,以确定利兹大学由工业合作伙伴Olleco开发的学术创新的商业开发潜力。这项研究符合BBSRC在生物能源战略领域的任务要求,该领域的重点是使用生物方法为更绿色、可持续的未来生产新的替代燃料。它还与生物经济的一个核心组成部分保持一致,该核心组成部分涉及在英国境内部署生物能源,有可能带来就业机会、经济增长和增强能源安全。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Technology Integration Approach for Optimising Biohydrogen Production from Food Waste
优化食物垃圾生物氢生产的技术集成方法
  • DOI:
    10.2139/ssrn.4740078
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Okoro-Shekwaga C
  • 通讯作者:
    Okoro-Shekwaga C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cynthia Okoro-Shekwaga其他文献

Cynthia Okoro-Shekwaga的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

生物钟核受体Rev-erbα在缺血性卒中神经元能量代谢中的改善作用及机制研究
  • 批准号:
    82371332
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
过表达CX45联合HCN4基因转染对起搏细胞自律性的影响
  • 批准号:
    81170174
  • 批准年份:
    2011
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
美洲大蠊药材养殖及加工过程中化学成分动态变化与生物活性的相关性研究
  • 批准号:
    81060329
  • 批准年份:
    2010
  • 资助金额:
    26.0 万元
  • 项目类别:
    地区科学基金项目
慢病毒转染嵌合体HCN1+4拼接基因构建生物起搏细胞
  • 批准号:
    81070139
  • 批准年份:
    2010
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
岭南瑶区几种瑶族抗肝炎植物药的化学成分及生物活性研究
  • 批准号:
    20772047
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
TB方法在有机和生物大分子体系计算研究中的应用
  • 批准号:
    20773047
  • 批准年份:
    2007
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目
天然生物材料的多尺度力学与仿生研究
  • 批准号:
    10732050
  • 批准年份:
    2007
  • 资助金额:
    200.0 万元
  • 项目类别:
    重点项目

相似海外基金

Resolving orofacial neuropathic pain evoked by compression of a trigeminal nerve branch using rationally integrated complementary approaches
使用合理整合的补充方法解决三叉神经分支受压引起的口面部神经性疼痛
  • 批准号:
    9703533
  • 财政年份:
    2020
  • 资助金额:
    $ 51.78万
  • 项目类别:
Interrogating Protein Methyltransferases with Integrated Approaches
用综合方法研究蛋白质甲基转移酶
  • 批准号:
    10166876
  • 财政年份:
    2019
  • 资助金额:
    $ 51.78万
  • 项目类别:
Interrogating Protein Methyltransferases with Integrated Approaches
用综合方法研究蛋白质甲基转移酶
  • 批准号:
    10436329
  • 财政年份:
    2019
  • 资助金额:
    $ 51.78万
  • 项目类别:
Interrogating Protein Methyltransferases with Integrated Approaches
用综合方法研究蛋白质甲基转移酶
  • 批准号:
    10630339
  • 财政年份:
    2019
  • 资助金额:
    $ 51.78万
  • 项目类别:
Integrated approaches to symport mechanisms of membrane transporters
膜转运蛋白转运机制的综合方法
  • 批准号:
    10206184
  • 财政年份:
    2018
  • 资助金额:
    $ 51.78万
  • 项目类别:
Integrated approaches to symport mechanisms of membrane transporters
膜转运蛋白转运机制的综合方法
  • 批准号:
    9895210
  • 财政年份:
    2018
  • 资助金额:
    $ 51.78万
  • 项目类别:
Integrated approaches to symport mechanisms of membrane transporters
膜转运蛋白转运机制的综合方法
  • 批准号:
    10385133
  • 财政年份:
    2018
  • 资助金额:
    $ 51.78万
  • 项目类别:
Center for Integrated Approaches to Undiagnosed Diseases
未确诊疾病综合治疗中心
  • 批准号:
    8686403
  • 财政年份:
    2014
  • 资助金额:
    $ 51.78万
  • 项目类别:
Center for Integrated Approaches to Undiagnosed Diseases
未确诊疾病综合治疗中心
  • 批准号:
    9251865
  • 财政年份:
    2014
  • 资助金额:
    $ 51.78万
  • 项目类别:
Center for Integrated Approaches to Undiagnosed Diseases
未确诊疾病综合治疗中心
  • 批准号:
    8882496
  • 财政年份:
    2014
  • 资助金额:
    $ 51.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了