LITAF: coupling ubiquitination to transport at the endosome

LITAF:将泛素化与内体运输相结合

基本信息

  • 批准号:
    BB/X001970/1
  • 负责人:
  • 金额:
    $ 75.71万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

How cells respond to their environment is determined by hundreds of different membrane proteins that are expressed on the cell surface. Cells must constantly sample and modify this complement of surface membrane proteins, to remove proteins that are no longer required at the surface due to a changed environment, or to replace proteins which become damaged by day-to-day stresses. The process that performs this important 'quality control' is endocytosis, whereby surface membrane proteins are internalised ('endocytosed') within vesicles to reach an intracellular compartment, the endosome. From there, membrane proteins that are no longer required are packaged into internal vesicles within the endosome, and the resulting structure (the multivesicular body) is then transported towards a degradative compartment (the lysosome). Alternatively, surface membrane proteins that are to be re-used are packaged at the endosome into membrane tubules and return to the cell surface. Each step of the endosomal pathway involves machinery that selects cargo membrane proteins for different destinations, coupled to machinery that deforms the membrane to generate transport intermediates (i.e. vesicles and tubules). In summary, the endosomal pathway is characterised by an abundance of high-curvature membranes that enact transport reactions. The function of virtually all cellular proteins is regulated by post-translational modifications. One key such modification is ubiquitination (the covalent attachment of the small protein ubiquitin, or polyubiquitin chains). Ubiquitination is widespread, with cells expressing >1000 ubiquitinating enzymes (ubiquitin ligases), but is particularly important during endocytosis, where it performs several important tasks. First, membrane proteins that are targeted for lysosomal degradation are tagged by ubiquitin, which is recognised by endosomal ubiquitin receptors that select such cargo and engage membrane-deforming proteins to enact each transport step. Second, these endosomal ubiquitin receptors can themselves be ubiquitinated, resulting in their auto-inhibition and thus they are switched off. Third, many membrane-deforming proteins are also ubiquitinated, often resulting in their rapid and reversible inactivation. Their coordinated ubiquitination ensures that transport reactions within the endosomal pathway are processive and efficient.Many of these ubiquitination events are driven by a family of ubiquitin ligases called Rsp5s, of which ITCH is a notable member. These ligases are located throughout the cell, so they must be closely controlled by 'adaptor' proteins to ensure that they ubiquitinate the correct targets at the right time and place. We propose that a protein called LITAF is the crucial adaptor that activates ITCH (and other Rsp5 ligases) upon the high-curvature membranes within the endosomal pathway and hence promotes the range of ubiquitination events that underpin the proper functioning of the endosomal pathway. We base our hypothesis on our findings: i) LITAF can itself support membrane curvature and is important for endosomal transport; ii) LITAF activates ITCH; iii) LITAF binds to endosomal ubiquitin receptors; iv) Depletion of LITAF and ITCH generate similar defects in membrane curvature within the endosomal pathway.Our proposal has two aims. First, we seek to understand how LITAF activates ITCH, and hence behaves as a bona fide ITCH adaptor with the potential to activate ITCH on high-curvature membranes. Second, we will identify the proteins for which LITAF promotes ITCH-dependent ubiquitination. We believe that endosomal ubiquitin receptors may be a key class of such substrates, and we will test this. We will also perform a non-biased screen to look for other LITAF clients, looking out for important components that facilitate endosomal transport steps. For a small subset of these we will test the impact of their ubiquitination.
细胞对环境的反应由细胞表面表达的数百种不同的膜蛋白决定。细胞必须不断地取样和修饰表面膜蛋白的这种补充,以去除由于环境变化而在表面不再需要的蛋白质,或替换因日常应激而受损的蛋白质。进行这一重要“质量控制”的过程是内吞作用,其中表面膜蛋白在囊泡内被内化(“内吞”)以到达细胞内区室,即内体。从那里,不再需要的膜蛋白被包装到内体内的内部囊泡中,然后将所得结构(多囊泡体)转运到降解区室(溶酶体)。或者,待再利用的表面膜蛋白在内体处包装成膜小管并返回细胞表面。内体途径的每一步都涉及为不同目的地选择货物膜蛋白的机制,与使膜变形以产生运输中间体(即囊泡和小管)的机制偶联。总之,内体途径的特征在于大量的高曲率膜,其产生转运反应。几乎所有细胞蛋白质的功能都受到翻译后修饰的调控。一个关键的修饰是泛素化(小蛋白泛素或多聚泛素链的共价连接)。泛素化广泛存在,细胞表达>1000种泛素化酶(泛素连接酶),但在胞吞过程中特别重要,它执行几项重要任务。首先,靶向溶酶体降解的膜蛋白被泛素标记,泛素被内体泛素受体识别,内体泛素受体选择这样的货物并接合膜变形蛋白以制定每个运输步骤。其次,这些内体泛素受体本身可以被泛素化,导致其自身抑制,因此它们被关闭。第三,许多膜变形蛋白也是泛素化的,通常导致它们快速和可逆的失活。它们协调的泛素化确保了内体途径内的转运反应是进行性的和有效的。许多这些泛素化事件是由一个称为Rsp 5s的泛素连接酶家族驱动的,ITCH是其中的一个著名成员。这些连接酶位于整个细胞中,因此它们必须受到“接头”蛋白的密切控制,以确保它们在正确的时间和地点泛素化正确的靶标。我们提出,一种名为LITAF的蛋白质是激活ITCH(和其他Rsp 5连接酶)在内体通路内的高曲率膜上的关键适配器,因此促进了一系列泛素化事件,这些事件支持了内体通路的正常功能。我们的假设基于我们的发现:i)LITAF本身可以支持膜曲率,并且对于内体转运很重要; ii)LITAF激活ITCH; iii)LITAF结合内体泛素受体; iv)LITAF的耗尽和ITCH在内体途径内产生类似的膜曲率缺陷。首先,我们试图了解LITAF如何激活ITCH,因此表现为真正的ITCH适配器,具有激活高曲率膜上ITCH的潜力。其次,我们将确定LITAF促进ITCH依赖性泛素化的蛋白质。我们相信,内体泛素受体可能是这类底物的一个关键类别,我们将对此进行测试。我们还将进行无偏见的筛选,以寻找其他LITAF客户端,寻找促进内体转运步骤的重要组分。对于其中的一小部分,我们将测试其泛素化的影响。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Woodman其他文献

Human Rabaptin-5 Is Selectively Cleaved by Caspase-3 during Apoptosis
  • DOI:
    10.1074/jbc.274.53.37583
  • 发表时间:
    1999-12-31
  • 期刊:
  • 影响因子:
  • 作者:
    Eileithyia Swanton;Naomi Bishop;Philip Woodman
  • 通讯作者:
    Philip Woodman

Philip Woodman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Woodman', 18)}}的其他基金

A comprehensive approach to reveal how EGFR signalling controls endosomal sorting
揭示 EGFR 信号传导如何控制内体分选的综合方法
  • 批准号:
    BB/R015864/1
  • 财政年份:
    2018
  • 资助金额:
    $ 75.71万
  • 项目类别:
    Research Grant
Litaf, a novel driver of membrane protrusion pathways
Litaf,膜突出途径的新型驱动因素
  • 批准号:
    BB/M000877/1
  • 财政年份:
    2014
  • 资助金额:
    $ 75.71万
  • 项目类别:
    Research Grant
Defining the architecture of the endosome-specific ESCRT-I complex
定义内体特异性 ESCRT-I 复合物的结构
  • 批准号:
    BB/K008773/1
  • 财政年份:
    2013
  • 资助金额:
    $ 75.71万
  • 项目类别:
    Research Grant
Novel effectors of multivesicular body sorting
多泡体分选的新型效应器
  • 批准号:
    BB/I012109/1
  • 财政年份:
    2011
  • 资助金额:
    $ 75.71万
  • 项目类别:
    Research Grant
Dynamics and function of early endsomes
早期内体的动力学和功能
  • 批准号:
    G0900930/1
  • 财政年份:
    2009
  • 资助金额:
    $ 75.71万
  • 项目类别:
    Research Grant
His Domain Phosphotyrosine Phosphatase (HDPTP), a key regulator of endocytic trafficking and receptor downregulation
His 结构域磷酸酪氨酸磷酸酶 (HDPTP),内吞运输和受体下调的关键调节因子
  • 批准号:
    G0701140/1
  • 财政年份:
    2008
  • 资助金额:
    $ 75.71万
  • 项目类别:
    Research Grant
The Role of ALIX during Multivesicular Body Biogenesis
ALIX 在多泡体生物发生过程中的作用
  • 批准号:
    BB/E019919/1
  • 财政年份:
    2008
  • 资助金额:
    $ 75.71万
  • 项目类别:
    Research Grant
Rab proteins, microtubule motors and the organisation of the endocytic pathway
Rab 蛋白、微管马达和内吞途径的组织
  • 批准号:
    G0600253/1
  • 财政年份:
    2006
  • 资助金额:
    $ 75.71万
  • 项目类别:
    Research Grant

相似国自然基金

KLK10调控胶质—血管耦合与对话促缺血性卒中后血脑屏障修复的机制
  • 批准号:
    82371465
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于外泌体TRPV4-Nox4 coupling途径探讨缺氧微环境调控鼻咽癌转移侵袭和血管新生的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
内质网、线粒体、细胞核互作网络与钙离子调控机制研究
  • 批准号:
    92054105
  • 批准年份:
    2020
  • 资助金额:
    80.0 万元
  • 项目类别:
    重大研究计划
基于p32-GCS1复合物的线粒体-内质网互作体系鉴定与功能研究
  • 批准号:
    92054106
  • 批准年份:
    2020
  • 资助金额:
    83.0 万元
  • 项目类别:
    重大研究计划
PKM2调控脂滴与线粒体互作机制及生理功能研究
  • 批准号:
    92054107
  • 批准年份:
    2020
  • 资助金额:
    83.0 万元
  • 项目类别:
    重大研究计划
基于功能蛋白质组学的线粒体相关内质网膜内源动态蛋白互作网络研究
  • 批准号:
    91954103
  • 批准年份:
    2019
  • 资助金额:
    74.0 万元
  • 项目类别:
    重大研究计划
棕色脂肪细胞脂滴线粒体互作的建立及维持机制研究
  • 批准号:
    91954108
  • 批准年份:
    2019
  • 资助金额:
    79.0 万元
  • 项目类别:
    重大研究计划
CRAC钙通道的功能及调控机制探究
  • 批准号:
    91954205
  • 批准年份:
    2019
  • 资助金额:
    291.0 万元
  • 项目类别:
    重大研究计划
新型二茂铁基四咪唑类大环配体的合成、表征及其金属配合物在非均相C-C偶联反应中的应用研究
  • 批准号:
    21102132
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
一类新型可调的手性膦配体的合成及其在不对称Suzuki-Miyaura反应中的应用
  • 批准号:
    20972196
  • 批准年份:
    2009
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

Novel Tools to Probe Trafficking and Function of Calcium Channel Signaling Complexes in Heart
探测心脏钙通道信号复合物的运输和功能的新工具
  • 批准号:
    10628914
  • 财政年份:
    2023
  • 资助金额:
    $ 75.71万
  • 项目类别:
Menopausal Knee-ds: Elucidating mechanisms and treatments for knee osteoarthritis
更年期膝关节:阐明膝骨关节炎的机制和治疗方法
  • 批准号:
    10749297
  • 财政年份:
    2023
  • 资助金额:
    $ 75.71万
  • 项目类别:
Therapeutic Editing of Rod Glycolysis Rescues Retinal Degeneration
杆状糖酵解的治疗性编辑可挽救视网膜变性
  • 批准号:
    10607717
  • 财政年份:
    2023
  • 资助金额:
    $ 75.71万
  • 项目类别:
Developing a genetic tag for in vivo protein regulation using PROTACs with companion PET imaging
使用 PROTAC 和伴随 PET 成像开发用于体内蛋白质调节的遗传标签
  • 批准号:
    10535045
  • 财政年份:
    2022
  • 资助金额:
    $ 75.71万
  • 项目类别:
Novel genetically-encoded inhibitors to probe functional logic of Cav-beta molecular diversity
新型基因编码抑制剂探索 Cav-beta 分子多样性的功能逻辑
  • 批准号:
    10581282
  • 财政年份:
    2022
  • 资助金额:
    $ 75.71万
  • 项目类别:
AKAP Integration of Phosphorylation and Ubiquitin Signaling
磷酸化和泛素信号传导的 AKAP 整合
  • 批准号:
    10462195
  • 财政年份:
    2022
  • 资助金额:
    $ 75.71万
  • 项目类别:
Enhancing cone survival in retinitis pigmentosa through cell-specific therapeutic CRISPR editing of a roxadustat target
通过 roxadustat 靶标的细胞特异性治疗性 CRISPR 编辑来增强色素性视网膜炎中视锥细胞的存活
  • 批准号:
    10624450
  • 财政年份:
    2022
  • 资助金额:
    $ 75.71万
  • 项目类别:
Enhancing cone survival in retinitis pigmentosa through cell-specific therapeutic CRISPR editing of a roxadustat target
通过 roxadustat 靶标的细胞特异性治疗性 CRISPR 编辑来增强色素性视网膜炎中视锥细胞的存活
  • 批准号:
    10421156
  • 财政年份:
    2022
  • 资助金额:
    $ 75.71万
  • 项目类别:
Molecular functions of human zinc transporter-8 in pancreatic beta cells
人锌转运蛋白 8 在胰腺 β 细胞中的分子功能
  • 批准号:
    10321946
  • 财政年份:
    2021
  • 资助金额:
    $ 75.71万
  • 项目类别:
Regulation of myocardial GPCRs by USP20 in normal and hypertrophied heart
USP20 对正常和肥厚心脏中心肌 GPCR 的调节
  • 批准号:
    10427441
  • 财政年份:
    2021
  • 资助金额:
    $ 75.71万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了