Heart conduction system sensor based on van der Waals heterostructures

基于范德华异质结构的心脏传导系统传感器

基本信息

  • 批准号:
    BB/X003736/1
  • 负责人:
  • 金额:
    $ 22.83万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The heart never rests - a typical human lifetime is approximately three billion heartbeats. Each of these heartbeats is initiated by an electrical excitation in a handful of special cells in the heart - the pacemaker cells. In a nutshell, electrical excitation is the transmembrane voltage difference generated as a result of various ions (K+, Na+, Ca2+) flowing in and out of pacemaker cells. The flow of ions is precisely controlled by opening and closing ion channels, which, in turn, is determined by the voltage difference across the cell membrane. During heartbeat, each of the 2-3 billion heart muscle cells contracts and relaxes in a well-coordinated manner, orchestrated by electrical excitation spreading out from pacemaker cells. However, mechanisms of the generation and spreading of electrical excitation are still poorly understood, especially at a sub-cellular level. This inevitably hinders the diagnosis and treatment of diseases caused by abnormal cardiac electrical activity. According to British Heart Foundation, heart and circulatory diseases cause one-quarter of all deaths in the UK, to put into perspective, every three minutes someone in the UK dies from cardiovascular disease. A deep understanding is therefore sorely needed.In this project, we aim to develop a timely sensing technique to probe electrical excitation in pacemaker cells at the sub-cellular level. The proposed sensor will be made of a one-dimensional array of nanosized "pixels". This array will be connected to external electronics to acquire snapshots of the electrical activity of a pacemaker cell placed in close contact with the sensor. To achieve ultra-high sensitivity, and to allow potential integration with flexible electronics in the future, we propose to use two-dimensional (2D) materials, such as graphene or hexagonal boron nitride (hBN) and their heterostructures, as the building blocks for the sensor pixels. Graphene itself could already outperform the best available solid-state sensors because it has a low charge carrier density and very high mobility. The advancement in van der Waals heterostructures further enables layer-by-atomic-layer engineering using a simple stamping and peeling technique, allowing the construction of complex circuitry with atomic precision. Consequently, the proposed sensor will be a few atom-layer in thickness and tens of microns in length, but fully functioning including amplifier, interconnect wires, support and protection layers. For example, the envisaged sensor can be built using a single layer of graphene sandwiched between hBN. This seemingly simple encapsulation could, in fact, dramatically improve sensor quality, making our sensor very sensitive to ionic current induced by cell activities. Not surprisingly, with the prosperous development in the field of van der Waals heterostructures, they can now be scaled up using epitaxial growth at wafer-scale, highlighting the potential applications of our sensors in broader fields. What exactly are we going to do? First, we will build the sensor "pixels" using van der Waals technology of 2D materials that are capable of probing and resolving sub-micron electrical features. In parallel, a dedicated experimental platform will be developed to allow our sensors to operate at physiological conditions. In other words, to make sure our measurements are biocompatible. Once developed, we will move forward to take "snapshots" of real heart cells, recorded as electrical signals that reflect cell activities, such as intracellular transport, or the action potential of individual pacemaker cells. These characteristics of heart cells at a sub-cellular scale will help to build a much clearer pathway towards diagnosis and treatment of heart diseases and serve as fundamentals to understand many other electrically active cells in general.
心脏从不休息--一个典型的人的一生大约是30亿次心跳。每一次心跳都是由心脏中少数特殊细胞--起搏细胞--的电刺激启动的。简而言之,电兴奋是由于各种离子(K+,Na+,Ca 2+)流入和流出起搏细胞而产生的跨膜电压差。离子的流动是通过打开和关闭离子通道来精确控制的,而离子通道又是由细胞膜上的电压差决定的。在心跳过程中,20 - 30亿个心肌细胞中的每一个都以一种协调的方式收缩和放松,由起搏细胞传播的电兴奋所协调。然而,电兴奋的产生和传播的机制仍然知之甚少,特别是在亚细胞水平。这就不可避免地阻碍了心电活动异常引起的疾病的诊断和治疗。根据英国心脏基金会的数据,心脏和循环系统疾病占英国所有死亡人数的四分之一,每三分钟就有一人死于心血管疾病。在本研究中,我们的目标是发展一种及时的传感技术,在亚细胞水平上探测起搏细胞中的电兴奋。所提出的传感器将由纳米尺寸的“像素”的一维阵列制成。该阵列将连接到外部电子设备,以获取与传感器紧密接触的起搏器细胞的电活动的快照。为了实现超高灵敏度,并允许未来与柔性电子产品的潜在集成,我们建议使用二维(2D)材料,如石墨烯或六方氮化硼(hBN)及其异质结构,作为传感器像素的构建块。石墨烯本身已经可以超越最好的固态传感器,因为它具有低载流子密度和非常高的迁移率。货车德瓦耳斯异质结构的进步进一步实现了使用简单的冲压和剥离技术的逐原子层工程,允许以原子精度构造复杂电路。因此,所提出的传感器将是几个原子层的厚度和几十微米的长度,但功能齐全,包括放大器,互连线,支持和保护层。例如,设想的传感器可以使用夹在hBN之间的单层石墨烯来构建。这种看似简单的封装实际上可以显着提高传感器的质量,使我们的传感器对细胞活动诱导的离子电流非常敏感。毫不奇怪,随着货车德瓦尔斯异质结构领域的蓬勃发展,现在可以使用外延生长在晶圆级扩大规模,突出了我们的传感器在更广泛领域的潜在应用。我们到底该怎么办?首先,我们将使用二维材料的货车德瓦尔斯技术构建传感器“像素”,该技术能够探测和解析亚微米电气特征。同时,将开发一个专用的实验平台,使我们的传感器能够在生理条件下运行。换句话说,确保我们的测量是生物相容的。一旦开发出来,我们将向前迈进,拍摄真实的心脏细胞的“快照”,记录为反映细胞活动的电信号,如细胞内运输,或单个起搏细胞的动作电位。在亚细胞尺度上心脏细胞的这些特征将有助于建立一个更清晰的诊断和治疗心脏病的途径,并作为理解许多其他电活性细胞的基础。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unexpected catalytic activity of nanorippled graphene.
A magnetically-induced Coulomb gap in graphene due to electron-electron interactions
由于电子-电子相互作用而在石墨烯中产生磁感应库仑间隙
  • DOI:
    10.1038/s42005-023-01277-y
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Vdovin E
  • 通讯作者:
    Vdovin E
Deep learning approach to genome of two-dimensional materials with flat electronic bands
  • DOI:
    10.1038/s41524-023-01056-x
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    A. Bhattacharya;I. Timokhin;R. Chatterjee;Qian Yang;A. Mishchenko
  • 通讯作者:
    A. Bhattacharya;I. Timokhin;R. Chatterjee;Qian Yang;A. Mishchenko
Giant magnetoresistance of Dirac plasma in high-mobility graphene.
  • DOI:
    10.1038/s41586-023-05807-0
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Xin, Na;Lourembam, James;Kumaravadivel, Piranavan;Kazantsev, A. E.;Wu, Zefei;Mullan, Ciaran;Barrier, Julien;Geim, Alexandra A.;Grigorieva, I. V.;Mishchenko, A.;Principi, A.;Fal'ko, V. I.;Ponomarenko, L. A.;Geim, A. K.;Berdyugin, Alexey I.
  • 通讯作者:
    Berdyugin, Alexey I.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Artem Mishchenko其他文献

Tunneling in Graphene/h-BN/Graphene Heterostructures through Zero-Dimensional Levels of Defects in h-BN and Their Use as Probes to Measure the Density of States of Graphene
通过六方氮化硼缺陷的零维水平在石墨烯/六方氮化硼/石墨烯异质结构中的隧道效应及其用作测量石墨烯态密度的探针
Elf autoencoder: unsupervised exploration of flat-band materials using electronic band structure fingerprints
Elf 自动编码器:使用电子能带结构指纹对平带材料进行无监督探索
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Henry Kelbrick Pentz;Thomas Warford;Ivan Timokhin;Qian Yang;Anupam Bhattacharya;Artem Mishchenko
  • 通讯作者:
    Artem Mishchenko
Quantifying hydrogen bonding using electrically tunable nanoconfined water
利用电可调纳米限域水定量氢键
  • DOI:
    10.1038/s41467-025-58608-6
  • 发表时间:
    2025-04-15
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Ziwei Wang;Anupam Bhattacharya;Mehmet Yagmurcukardes;Vasyl Kravets;Pablo Díaz-Núñez;Ciaran Mullan;Ivan Timokhin;Takashi Taniguchi;Kenji Watanabe;Alexander N. Grigorenko;Francois Peeters;Kostya S. Novoselov;Qian Yang;Artem Mishchenko
  • 通讯作者:
    Artem Mishchenko
Elf autoencoder for unsupervised exploration of flat-band materials using electronic band structure fingerprints
基于电子能带结构指纹的无监督探索平带材料的埃尔夫自动编码器
  • DOI:
    10.1038/s42005-025-01936-2
  • 发表时间:
    2025-01-17
  • 期刊:
  • 影响因子:
    5.800
  • 作者:
    Henry Kelbrick Pentz;Thomas Warford;Ivan Timokhin;Hongpeng Zhou;Qian Yang;Anupam Bhattacharya;Artem Mishchenko
  • 通讯作者:
    Artem Mishchenko

Artem Mishchenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Artem Mishchenko', 18)}}的其他基金

Nanoelectromechanics in van der Waals heterostructures
范德华异质结构中的纳米机电
  • 批准号:
    EP/N007131/1
  • 财政年份:
    2016
  • 资助金额:
    $ 22.83万
  • 项目类别:
    Fellowship

相似海外基金

The role of VSNL1 in human heart rate regulation
VSNL1在人体心率调节中的作用
  • 批准号:
    10750747
  • 财政年份:
    2023
  • 资助金额:
    $ 22.83万
  • 项目类别:
5 D impulse mapping in the embryonic heart
胚胎心脏的 5D 脉冲图
  • 批准号:
    10572425
  • 财政年份:
    2023
  • 资助金额:
    $ 22.83万
  • 项目类别:
A computational model of fibrosis and the cardiac conduction system: the next generation of virtual heart models for research and teaching
纤维化和心脏传导系统的计算模型:用于研究和教学的下一代虚拟心脏模型
  • 批准号:
    NC/Y500598/1
  • 财政年份:
    2023
  • 资助金额:
    $ 22.83万
  • 项目类别:
    Training Grant
Evaluation of Left Bundle Branch Area Pacing As A Rescue Strategy for Cardiac Resynchronization Therapy Non-response in Patients With Heart Failure: A Randomized Controlled Trial
左束支区起搏作为心力衰竭患者心脏再同步治疗无反应的抢救策略的评估:随机对照试验
  • 批准号:
    10703634
  • 财政年份:
    2023
  • 资助金额:
    $ 22.83万
  • 项目类别:
Cardiac Myocyte Protein Partners in Heart Function
心肌细胞蛋白在心脏功能中的伙伴
  • 批准号:
    10502152
  • 财政年份:
    2022
  • 资助金额:
    $ 22.83万
  • 项目类别:
Cardiac Myocyte Protein Partners in Heart Function
心肌细胞蛋白在心脏功能中的伙伴
  • 批准号:
    10667626
  • 财政年份:
    2022
  • 资助金额:
    $ 22.83万
  • 项目类别:
Cardiac Lineage-Specific Molecular Mechanisms of Heart Failure
心力衰竭的心脏谱系特异性分子机制
  • 批准号:
    10852685
  • 财政年份:
    2021
  • 资助金额:
    $ 22.83万
  • 项目类别:
Interoperative Cardiac Tissue Imaging: Implications in Congenital Heart Disease
术中心脏组织成像:对先天性心脏病的影响
  • 批准号:
    10318255
  • 财政年份:
    2021
  • 资助金额:
    $ 22.83万
  • 项目类别:
The complex genetics of heart regeneration
心脏再生的复杂遗传学
  • 批准号:
    10343771
  • 财政年份:
    2019
  • 资助金额:
    $ 22.83万
  • 项目类别:
The complex genetics of heart regeneration
心脏再生的复杂遗传学
  • 批准号:
    9891094
  • 财政年份:
    2019
  • 资助金额:
    $ 22.83万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了