Earth's coolest organosulfur molecule: understanding how agriculture can be more cooling to the climate
地球上最冷的有机硫分子:了解农业如何使气候更加凉爽
基本信息
- 批准号:BB/X005968/1
- 负责人:
- 金额:$ 20.38万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Billions of tonnes of the organosulfur compound dimethylsulfoniopropionate (DMSP) are made each year by marine algae, corals and bacteria, but plants also make this important molecule, including crops such as maize and tomato. DMSP is key in global sulfur cycling, as it is the main precursor of the climate-active gas dimethylsulfide (DMS). In marine settings, DMS gives the seaside its distinctive smell and is used by many animals and birds as a chemoattractant associated with their algal food. DMS is oxidised in the atmosphere to sulfates that accelerate cloud formation. These clouds affect the amount of sunlight reaching the Earth's surface and this in turn affects the climate by causing a local cooling effect. Sulfur is returned to land in the form of rain, completing the cycle.Production of DMSP and DMS is traditionally associated with marine environments and the coast. For example, saltmarshes are hotspots of DMSP/DMS synthesis and contribute up to 10% of global DMS emissions. However, new data (including our own) suggest that significant DMSP/DMS production also occurs in agricultural systems. We have recently identified many different crops that produce DMSP. DMSP production likely protects these crop from environmental stresses, such as salinity and nutrient limitations, but this has not been established. We have also found that crop rhizospheres contain more DMSP than is typically found in seawater and that they emit DMS. Moreover, we have isolated crop-associated bacteria that convert DMSP into DMS and promote plant growth. In this project, we will evaluate the importance of DMSP/DMS production in agriculture and assess whether harnessing or manipulating these processes can improve agricultural productivity, boost crop and climate-cooling DMS yields.We will study the agricultural production and turnover rates of DMSP and DMS by different crops growing in field sites over a season. By building and deploying remote DMS field sensors, we will track DMS production in real-time from crops, giving us high-resolution data on DMS release into the atmosphere from agriculture to inform models. We will also assess the abundance, diversity and potential importance of crop-interacting microbes that degrade plant-made DMSP to release DMS. Together, this will establish whether specific developmental triggers and environmental factors (e.g. agricultural practices, soil chemistry or crop physiology) cause more DMSP production and DMS release into the atmosphere as a direct result of agriculture. Since we are challenging the dogma that DMSP/DMS synthesis is solely a marine process, we will additionally reassess the global budgets for DMSP/DMS using mathematical modelling, so that DMSP/DMS production from agriculture and any potential climate cooling effects can be considered. This work will allow us to better understand and predict the significance of agricultural landscapes for the production of these influential compounds.Overall, this work will allow us to understand how and why agriculture contributes to global DMSP and DMS production. This will allow us to predict better the impacts of DMSP and DMS on the natural environment, agri-food systems and climate. Harnessing the protective effects of DMSP production in plants and the beneficial traits of growth-promoting microbes may also allow us to improve crop growth and productivity under stressful conditions (e.g. drought and salinity linked to climate change), and enhance future food security and climate-cooling DMS production.
每年有数十亿吨的有机硫化合物二甲基磺基丙酸酯(DMSP)由海藻、珊瑚和细菌产生,但植物也会产生这种重要的分子,包括玉米和番茄等作物。DMSP是全球硫循环的关键,因为它是气候活跃气体二甲基硫(DMS)的主要前体。在海洋环境中,二甲基硫醚赋予海滨独特的气味,被许多动物和鸟类用作与藻类食物相关的化学引诱剂。DMS在大气中被氧化成硫酸盐,加速云的形成。这些云影响到达地球表面的阳光量,这反过来又通过引起局部冷却效应来影响气候。硫以雨水的形式返回陆地,完成循环。DMSP和DMS的产生传统上与海洋环境和海岸有关。例如,盐沼是DMSP/DMS合成的热点,占全球DMS排放量的10%。然而,新的数据(包括我们自己的数据)表明,在农业系统中也会产生大量的DMSP/DMS。我们最近发现了许多不同的作物产生DMSP。DMSP生产可能保护这些作物免受环境胁迫,如盐度和养分限制,但这一点尚未得到证实。我们还发现,作物根际含有更多的DMSP比通常在海水中发现的,他们释放DMS。此外,我们已经分离出与作物相关的细菌,它们将DMSP转化为DMS并促进植物生长。本项目将评估DMSP/DMS生产在农业中的重要性,并评估利用或操纵这些过程是否可以提高农业生产力,提高作物产量和气候降温DMS产量。我们将研究一个季节内不同作物在田间生长的农业产量和DMSP和DMS的周转率。通过构建和部署远程DMS现场传感器,我们将实时跟踪农作物的DMS生产,为我们提供有关DMS从农业释放到大气中的高分辨率数据,以告知模型。我们还将评估与作物相互作用的微生物的丰度、多样性和潜在重要性,这些微生物降解植物制造的DMSP以释放DMS。总之,这将确定特定的发育触发因素和环境因素(如农业做法、土壤化学或作物生理)是否会直接导致更多的二甲醚悬浮物质产生和二甲硫醚释放到大气中。由于我们正在挑战DMSP/DMS合成仅仅是一个海洋过程的教条,我们还将使用数学建模重新评估DMSP/DMS的全球预算,以便可以考虑农业生产的DMSP/DMS和任何潜在的气候变冷效应。这项工作将使我们能够更好地了解和预测农业景观对这些有影响力的化合物的生产的重要性,总体而言,这项工作将使我们能够了解农业如何以及为什么有助于全球DMSP和DMS的生产。这将使我们能够更好地预测DMSP和DMS对自然环境、农业食品系统和气候的影响。利用DMSP生产对植物的保护作用和促进生长的微生物的有益特性,还可能使我们能够在压力条件下(例如与气候变化有关的干旱和盐碱化)改善作物生长和生产力,并加强未来的粮食安全和气候降温的二甲硫醚生产。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Insights into methionine S-methylation in diverse organisms.
深入了解不同生物体中的蛋氨酸 S-甲基化
- DOI:10.1038/s41467-022-30491-5
- 发表时间:2022-05-26
- 期刊:
- 影响因子:16.6
- 作者:
- 通讯作者:
CIPK-B is essential for salt stress signalling in Marchantia polymorpha
- DOI:10.1101/2022.08.22.504506
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Connor Tansley;James Houghton;Althea M E Rose;Bartosz Witek;Rocky D Payet;Taoyang Wu;J. B. Miller
- 通讯作者:Connor Tansley;James Houghton;Althea M E Rose;Bartosz Witek;Rocky D Payet;Taoyang Wu;J. B. Miller
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
J. Benjamin Miller其他文献
Evolution of passwords for cost-free honest signalling between symbionts and hosts
共生体和主机之间无成本诚实信号的密码演变
- DOI:
10.1101/065755 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
M. Archetti;J. Benjamin Miller;Douglas W. Yu - 通讯作者:
Douglas W. Yu
J. Benjamin Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('J. Benjamin Miller', 18)}}的其他基金
Oh I do like to grow beside the seaside: understanding how and why plants produce DMSP
哦,我确实喜欢在海边生长:了解植物如何以及为何产生 DMSP
- 批准号:
NE/V000756/1 - 财政年份:2021
- 资助金额:
$ 20.38万 - 项目类别:
Research Grant
相似海外基金
Physical Properties of the Coolest Brown Dwarfs
最冷的棕矮星的物理特性
- 批准号:
1518339 - 财政年份:2015
- 资助金额:
$ 20.38万 - 项目类别:
Continuing Grant
A Workshop on The Biggest, Baddest, Coolest Stars
关于最大、最坏、最酷明星的研讨会
- 批准号:
0721663 - 财政年份:2007
- 资助金额:
$ 20.38万 - 项目类别:
Standard Grant