Oh I do like to grow beside the seaside: understanding how and why plants produce DMSP

哦,我确实喜欢在海边生长:了解植物如何以及为何产生 DMSP

基本信息

  • 批准号:
    NE/V000756/1
  • 负责人:
  • 金额:
    $ 70.76万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Billions of tonnes of the organosulfur compound dimethylsulfoniopropionate (DMSP) are made each year by marine algae, corals and bacteria, but some plants also make this important molecule. DMSP is a key marine nutrient pivotal in global sulfur cycling, as it is the main precursor of the climate-active gas dimethylsulfide (DMS). DMS gives the seaside its distinctive smell and is used by many animals and birds as a chemoattractant associated with their algal food. In the atmosphere, DMS is oxidised to sulfates that accelerate cloud formation over the oceans. These clouds affect the amount of sunlight reaching the Earth's surface and this in turn affects the climate. Sulfur is returned to land in the form of rain, completing the cycle.Production of DMSP and DMS is concentrated at the coast, with saltmarshes being hotspots for DMSP/DMS synthesis and predicted to contribute up to 10% of global DMS emissions. We have recently identified different bacteria and algae in saltmarsh mud that make DMSP, but plants in these habitats (particularly the perennial grass Spartina) are believed to be the major DMSP and DMS producers in saltmarshes. In fact, Spartina has the highest intracellular DMSP concentration of all known plants, which is far in excess of that in most DMSP-producing bacteria and algae. DMSP production likely protects plants from environmental stresses associated with growing at the seaside, such as salinity and nutrient limitations, but this has not been fully tested or established. Interestingly, some Spartina species cannot make DMSP (even though they grow well at the coast), while some crop plants (such as tomato and maize - which don't usually grow at the coast) are able to produce DMSP when grown under particular environmental stresses like high salinity or drought. Our understanding of why plants produce DMSP is therefore lacking and this is something we will investigate here, focussing on specific Spartina species that either produce DMSP or do not and the crop plant tomato. We will establish which developmental triggers and environmental conditions cause plants to synthesise DMSP and will determine what benefits DMSP production confers to plants. Furthermore, we will study the natural production and turnover rates of DMSP and DMS by Spartina growing in saltmarshes over a season. This will allow us to better understand and predict the significance of such environments for the production of these influential compounds.It is also unclear how plants actually produce DMSP. Our work with bacteria and algae identified different biosynthetic routes for DMSP synthesis and the key genes and enzymes involved. Based on this previous work, we have now identified candidate genes responsible for DMSP production in plants. We will mutate these genes and characterise their enzyme products to confirm their function in the plant DMSP synthesis pathway. We will also study how these plant genes are expressed, i.e. when and in which specific tissues and cellular compartments, and regulated by which environmental conditions. Currently the contribution of plants to global DMSP and DMS production is likely vastly underestimated since few plants have been tested for DMSP under appropriate conditions. Knowing key plant DMSP synthesis genes and factors regulating them will allow us to evaluate better the diversity of plants capable of this process and their potential impacts on environmental production.Overall, this work will allow us to understand how, why and where plants produce DMSP and how plants contribute to global DMSP and DMS production. This will allow us to predict better the impacts of DMSP and DMS on the natural environment and climate. Harnessing the protective effects of DMSP production in plants may also allow us to improve crop growth and productivity under stressful conditions and thus enhance food security in the future.
海洋藻类、珊瑚和细菌每年产生数十亿吨有机硫磺化合物二甲基磺基丙酸酯(DMSP),但一些植物也会制造这种重要的分子。DMSP是全球硫循环中关键的海洋营养物质,因为它是气候活性气体二甲基硫化物(DMS)的主要前体。DMS给海边带来了独特的气味,许多动物和鸟类都将其用作与藻类食物相关的化学诱导剂。在大气中,DMS被氧化成硫酸盐,从而加速海洋上空云层的形成。这些云层会影响到达地球表面的太阳光的数量,进而影响气候。硫以降雨的形式返回陆地,完成循环。DMSP和DMS的生产集中在沿海,盐沼是DMSP/DMS合成的热点,预计占全球DMS排放量的10%。我们最近在盐沼泥中发现了不同的细菌和藻类来产生DMSP,但这些生境中的植物(特别是多年生草本植物斯巴达纳)被认为是盐沼中产生DMSP和DMS的主要植物。事实上,在已知的所有植物中,大米草的胞内DMSP浓度最高,远远超过大多数产生DMSP的细菌和藻类的浓度。DMSP的生产可能会保护植物免受与在海边生长相关的环境压力,如盐度和营养限制,但这还没有得到充分的测试或确定。有趣的是,一些斯巴达纳植物不能产生DMSP(即使它们在海岸生长得很好),而一些农作物(如番茄和玉米--通常不在海岸生长)在高盐度或干旱等特殊环境压力下生长时能够产生DMSP。因此,我们对植物产生DMSP的原因缺乏了解,这是我们将在这里进行调查的内容,重点是产生DMSP或不产生DMSP的特定斯巴达物种以及作物番茄。我们将确定哪些发育触发因素和环境条件导致植物合成DMSP,并将确定DMSP的生产给植物带来什么好处。此外,我们还将研究盐沼中生长的大米草在一个季节内对DMSP和DMS的自然生产量和周转率。这将使我们能够更好地了解和预测这种环境对生产这些有影响的化合物的重要性。目前也不清楚植物实际上是如何产生DMSP的。我们用细菌和藻类进行的工作确定了合成DMSP的不同生物合成途径,以及涉及的关键基因和酶。在前人工作的基础上,我们现在已经确定了植物中负责DMSP产生的候选基因。我们将突变这些基因,并对它们的酶产物进行鉴定,以确认它们在植物DMSP合成途径中的功能。我们还将研究这些植物基因是如何表达的,即何时在哪些特定的组织和细胞隔间中表达,以及受哪些环境条件的调控。目前,植物对全球DMSP和DMS生产的贡献可能被大大低估,因为很少有植物在适当条件下接受DMSP测试。了解关键的植物DMSP合成基因及其调控因子将使我们能够更好地评估具有这一过程的植物的多样性及其对环境生产的潜在影响。总之,这项工作将使我们了解植物如何、为什么和在哪里产生DMSP,以及植物如何对全球DMSP和DMS的产生做出贡献。这将使我们能够更好地预测DMSP和DMS对自然环境和气候的影响。在植物中利用DMSP生产的保护作用也可能使我们能够在压力条件下改善作物生长和生产力,从而加强未来的粮食安全。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Insights into methionine S-methylation in diverse organisms.
深入了解不同生物体中的蛋氨酸 S-甲基化
  • DOI:
    10.1038/s41467-022-30491-5
  • 发表时间:
    2022-05-26
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
  • 通讯作者:
CIPK-B is essential for salt stress signalling in Marchantia polymorpha
  • DOI:
    10.1101/2022.08.22.504506
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Connor Tansley;James Houghton;Althea M E Rose;Bartosz Witek;Rocky D Payet;Taoyang Wu;J. B. Miller
  • 通讯作者:
    Connor Tansley;James Houghton;Althea M E Rose;Bartosz Witek;Rocky D Payet;Taoyang Wu;J. B. Miller
Function and wide distribution of DMSOP cleaving enzymes in marine organisms
DMSOP裂解酶在海洋生物中的功能和广泛分布
  • DOI:
    10.21203/rs.3.rs-2412526/v1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Carrion O
  • 通讯作者:
    Carrion O
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

J. Benjamin Miller其他文献

Evolution of passwords for cost-free honest signalling between symbionts and hosts
共生体和主机之间无成本诚实信号的密码演变
  • DOI:
    10.1101/065755
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Archetti;J. Benjamin Miller;Douglas W. Yu
  • 通讯作者:
    Douglas W. Yu

J. Benjamin Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('J. Benjamin Miller', 18)}}的其他基金

Earth's coolest organosulfur molecule: understanding how agriculture can be more cooling to the climate
地球上最冷的有机硫分子:了解农业如何使气候更加凉爽
  • 批准号:
    BB/X005968/1
  • 财政年份:
    2022
  • 资助金额:
    $ 70.76万
  • 项目类别:
    Research Grant

相似国自然基金

复合菌剂在高DO下的好氧反硝化脱氮机制及工艺调控研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
内生真菌DO14多糖PPF30调控铁皮石斛葡甘聚糖生物合成的机制
  • 批准号:
    LZ23H280001
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于捕获“Do not eat me”信号的肺癌异质性分子功能可视化及机理研究
  • 批准号:
    92259102
  • 批准年份:
    2022
  • 资助金额:
    60.00 万元
  • 项目类别:
    重大研究计划
基于达文波特星形酵母Do18强化发酵的糟带鱼生物胺生物调控机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于PO-DGT原理的沉积物微界面pH-DO-磷-重金属的精细化同步成像技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
CD38/cADPR信号通路异常促逼尿肌过度活动(DO)发生的分子机制及干预措施研究
  • 批准号:
    81770762
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
USP2介导RagA去泛素化稳定肿瘤细胞“Do not eat me”信号的机制研究
  • 批准号:
    81773040
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
抑制骨细胞来源Sclerostin蛋白对颌面部DO成骨的协同促进作用
  • 批准号:
    81771104
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
内生真菌DO14促铁皮石斛多糖成分积累的作用机制
  • 批准号:
    31600259
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
末次冰期东亚季风DO事件的定年、转型及亚旋回研究
  • 批准号:
    40702026
  • 批准年份:
    2007
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

'What do women activists sound like?' An exploration of women's environmental activism in Europe through the lens of community radios
“女性活动家听起来是什么样的?”
  • 批准号:
    2888282
  • 财政年份:
    2023
  • 资助金额:
    $ 70.76万
  • 项目类别:
    Studentship
Do innate-like B cell responses contribute to neonatal immunity?
先天性 B 细胞反应是否有助于新生儿免疫力?
  • 批准号:
    MR/X000257/1
  • 财政年份:
    2023
  • 资助金额:
    $ 70.76万
  • 项目类别:
    Research Grant
Rivers on ice: do supraglacial streams evolve like bedrock rivers?
冰上的河流:冰上溪流是否像基岩河流一样演化?
  • 批准号:
    2679270
  • 财政年份:
    2022
  • 资助金额:
    $ 70.76万
  • 项目类别:
    Studentship
What do membranes really look like? New approaches to 3D multiplexed imaging of the cell surface
膜到底是什么样子的?
  • 批准号:
    EP/V048031/1
  • 财政年份:
    2021
  • 资助金额:
    $ 70.76万
  • 项目类别:
    Research Grant
Oral delivery of insulin using ligand-directed nanoparticles that do not compete with physiological ligands
使用不与生理配体竞争的配体导向纳米颗粒口服胰岛素
  • 批准号:
    10399664
  • 财政年份:
    2020
  • 资助金额:
    $ 70.76万
  • 项目类别:
Oral delivery of insulin using ligand-directed nanoparticles that do not compete with physiological ligands
使用不与生理配体竞争的配体导向纳米颗粒口服胰岛素
  • 批准号:
    10373829
  • 财政年份:
    2020
  • 资助金额:
    $ 70.76万
  • 项目类别:
Oral delivery of insulin using ligand-directed nanoparticles that do not compete with physiological ligands
使用不与生理配体竞争的配体导向纳米颗粒口服胰岛素
  • 批准号:
    10580808
  • 财政年份:
    2020
  • 资助金额:
    $ 70.76万
  • 项目类别:
Oral delivery of insulin using ligand-directed nanoparticles that do not compete with physiological ligands
使用不与生理配体竞争的配体导向纳米颗粒口服胰岛素
  • 批准号:
    10027854
  • 财政年份:
    2020
  • 资助金额:
    $ 70.76万
  • 项目类别:
Do Xenobiotics Exacerbate Idiopathic Autoimmunity?
异生素会加剧特发性自身免疫吗?
  • 批准号:
    9506204
  • 财政年份:
    2018
  • 资助金额:
    $ 70.76万
  • 项目类别:
Do Xenobiotics Exacerbate Idiopathic Autoimmunity?
异生素会加剧特发性自身免疫吗?
  • 批准号:
    9762107
  • 财政年份:
    2018
  • 资助金额:
    $ 70.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了