Probing the mechanisms that couple genome segregation to chromosome organization in Archaea

探讨古细菌基因组分离与染色体组织的耦合机制

基本信息

  • 批准号:
    BB/X00645X/1
  • 负责人:
  • 金额:
    $ 55.57万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Archaea are unicellular organisms that populate our planet together with bacteria and eukaryotes. Bacteria and archaea are prokaryotes i.e., their DNA is not confined into a separate compartment, called nucleus, which is a defining hallmark of eukaryotes (baker yeast, fungi, algae, animals and humans to mention some). Archaea are ubiquitous, constituting a large fraction of the biosphere. For example, it has been reported that the world ocean alone contains approximately 1.3 x 10 to the 28 archaeal cells: this is an enormous number. From a functional and mechanistic standpoint, archaea are a mosaic of tesserae from bacteria and eukaryotes.Thermophilic archaea are super microbes thriving at 80 degrees Celsius and higher temperatures in hot springs, volcanoes, deep sea vents and exhibiting properties, which make these organisms extremely interesting for basic studies on life pushed to extremes. Recent studies have proposed that eukaryotes originated from archaea, casting a novel light on this domain of life.Despite the progress made in decoding mechanisms in these organisms, to date there is a knowledge gap on the fundamental process of chromosome segregation in archaea. Genome segregation is a crucial stage of every cell's life cycle: the genetic material is duplicated, then separated and distributed into two daughter cells. We intend to dissect this process in the archaeon Sulfolobus, whose genome encodes two proteins, SegA and SegB, which interact to form a simple chromosome segregation machine. This is the prototype of a genome partitioning system widespread across archaea, including uncultured members. Thus, it represents an excellent model system to study chromosome segregation.SegA is a protein that binds a molecule, known as ATP, and DNA with no sequence preference. SegB is a protein that recognises specific DNA sequences and binds to to these sites with high affinity. By performing genome-wide experiments, we have established that multiple SegB DNA motifs are scattered across the chromosome. A large number of the sites are clustered in the region harbouring the segAB genes and one of the replication origins, DNA sequences crucial for duplication. Consistent with these observations, microscopy investigations have revealed that by binding the different sites on the chromosome SegB forms multiple clusters, which coalesce into larger patches in numerous cells. Moreover, in vitro studies with high-resolution microscopy, which allows to visualize single DNA molecules, have shown that SegB bridges distant DNA sites, forming loop structures. These findings raise the hypothesis that SegB may be a key player in mediating chromosome organization in preparation for segregation. We have recently solved the three-dimensional structures of SegA, SegB and respective complexes with DNA, which provide snapshots into the mechanism of action of the proteins.This project aims to discover the mechanisms adopted by the SegAB complex to mediate the separation and distribution of chromosomes into daughter cells and to establish how this process is coupled to chromosome organization. We will investigate chromosome structure in normal and mutant cells by using a technique able to map long-range contacts between regions of the chromosome. High-resolution single-molecule microscopy with purified components will probe DNA compaction upon SegAB binding and bridging of distant sites. The interactions within the SegAB-DNA complex and associations with regulators in the cell will be identified by irreversibly 'handcuffing' the proteins and subjecting the mix to mass spectrometry, a technique able to determine the mass of interacting proteins. A further objective is solving the structure of the whole SegAB-DNA complex by a biophysical approach, known as cryo electron microscopy. The multiple pieces of the jigsaw from the different investigations will be combined to generate a holistic picture of chromosome segregation in archaea.
微生物是单细胞生物,与细菌和真核生物一起居住在我们的星球上。细菌和古生菌是原核生物,它们的DNA并不局限于一个单独的隔室,称为细胞核,细胞核是真核生物(面包酵母、真菌、藻类、动物和人类等)的标志。珊瑚礁无处不在,构成了生物圈的很大一部分。例如,据报道,仅世界海洋就含有大约1.3 × 10的28个古细菌细胞:这是一个巨大的数字。从功能和机械的角度来看,古细菌是来自细菌和真核生物的镶嵌体。嗜热古细菌是超级微生物,在温泉、火山、深海喷口中在80摄氏度和更高的温度下繁衍生息,并表现出一些特性,这使得这些生物体对于生命的基础研究非常有趣被推向极端。最近的研究提出真核生物起源于古生菌,为古生菌的研究提供了新的思路。尽管在古生菌的染色体解码机制方面取得了很大进展,但到目前为止,对古生菌染色体分离的基本过程仍存在着认识上的空白。基因组分离是每个细胞生命周期的关键阶段:遗传物质被复制,然后分离并分布到两个子细胞中。我们打算在古菌硫化叶菌中剖析这一过程,硫化叶菌的基因组编码两种蛋白质SegA和SegB,它们相互作用形成一个简单的染色体分离机器。这是一个基因组分配系统的原型,广泛分布于古细菌中,包括未培养的成员。SegA是一种蛋白质,它结合一种称为ATP的分子和DNA,没有序列偏好。SegB是一种识别特定DNA序列并以高亲和力结合到这些位点的蛋白质。通过进行全基因组实验,我们已经确定多个SegB DNA基序分散在染色体上。大量的位点聚集在含有segAB基因和复制起点之一的区域中,复制起点是对复制至关重要的DNA序列。与这些观察结果相一致,显微镜研究表明,通过结合染色体上的不同位点,SegB形成多个簇,这些簇在许多细胞中合并成较大的斑块。此外,使用高分辨率显微镜进行的体外研究(可以观察单个DNA分子)表明,SegB桥接了遥远的DNA位点,形成了环状结构。这些发现提出了一个假设,即SegB可能是介导染色体组织准备分离的关键角色。我们最近解决了SegA,SegB和各自与DNA的复合物的三维结构,这为蛋白质的作用机制提供了快照。本项目旨在发现SegAB复合物介导染色体分离和分配到子细胞中的机制,并确定该过程如何与染色体组织相结合。我们将研究正常和突变细胞的染色体结构,通过使用能够映射染色体区域之间的长距离接触的技术。具有纯化组分的高分辨率单分子显微镜将在SegAB结合和桥接远端位点时探测DNA压实。SegAB-DNA复合物内的相互作用以及与细胞中调节因子的关联将通过不可逆地“手铐”蛋白质并将混合物进行质谱分析来鉴定,这是一种能够确定相互作用蛋白质质量的技术。另一个目标是通过生物物理方法(称为冷冻电子显微镜)解决整个SegAB-DNA复合物的结构。来自不同研究的多块拼图将被结合起来,以生成古细菌染色体分离的整体图像。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniela Barillà其他文献

The bacterial segrosome: a dynamic nucleoprotein machine for DNA trafficking and segregation
细菌隔离子体:一种用于 DNA 运输和分离的动态核蛋白机器
  • DOI:
    10.1038/nrmicro1342
  • 发表时间:
    2006-02-01
  • 期刊:
  • 影响因子:
    103.300
  • 作者:
    Finbarr Hayes;Daniela Barillà
  • 通讯作者:
    Daniela Barillà

Daniela Barillà的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniela Barillà', 18)}}的其他基金

A novel DNA segregation model system from Archaea revealing bacterial and eukaryotic linkages
古细菌的新型 DNA 分离模型系统揭示了细菌和真核生物的联系
  • 批准号:
    BB/R006369/1
  • 财政年份:
    2018
  • 资助金额:
    $ 55.57万
  • 项目类别:
    Research Grant
How does a chimeric partition machine mediate chromosome segregation in Archaea?
嵌合分配机如何介导古细菌中的染色体分离?
  • 批准号:
    BB/M007839/1
  • 财政年份:
    2015
  • 资助金额:
    $ 55.57万
  • 项目类别:
    Research Grant
Novel molecular targets to combat antibiotic resistance: probing the assembly dynamics of a bacterial mitotic spindle
对抗抗生素耐药性的新分子靶点:探索细菌有丝分裂纺锤体的组装动力学
  • 批准号:
    G0801162/1
  • 财政年份:
    2009
  • 资助金额:
    $ 55.57万
  • 项目类别:
    Research Grant
Probing DNA segregation in archaea: molecular dissection of an atypical tricistronic partition system from Sulfolobus
探索古细菌中的 DNA 分离:来自硫化叶菌的非典型三顺反子分配系统的分子解剖
  • 批准号:
    BB/F012004/1
  • 财政年份:
    2008
  • 资助金额:
    $ 55.57万
  • 项目类别:
    Research Grant
A prototype of a bacterial mitotic spindle: moving DNA molecules apart through a polymerization-based engine
细菌有丝分裂纺锤体的原型:通过基于聚合的引擎将 DNA 分子分开
  • 批准号:
    G0400287/2
  • 财政年份:
    2006
  • 资助金额:
    $ 55.57万
  • 项目类别:
    Research Grant

相似国自然基金

Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
Erk1/2/CREB/BDNF通路在CSF1R相关性白质脑病致病机制中的作用研究
  • 批准号:
    82371255
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
  • 批准号:
    82370979
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
  • 批准号:
    82370981
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
  • 批准号:
    82370851
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
  • 批准号:
    82372015
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
小脑浦肯野细胞突触异常在特发性震颤中的作用机制及靶向干预研究
  • 批准号:
    82371248
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
  • 批准号:
    82371973
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
  • 批准号:
    82371652
  • 批准年份:
    2023
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目

相似海外基金

Probing the mechanisms that couple genome segregation to chromosome organisation in Archaea
探讨古细菌基因组分离与染色体组织的耦合机制
  • 批准号:
    BB/X006506/1
  • 财政年份:
    2023
  • 资助金额:
    $ 55.57万
  • 项目类别:
    Research Grant
Mechanisms that couple irregular development of fetal melanoblasts to premature exhaustion of adult melanocyte stem cells
胎儿黑色素细胞的不规则发育与成体黑色素细胞干细胞过早耗竭的机制
  • 批准号:
    10461955
  • 财政年份:
    2021
  • 资助金额:
    $ 55.57万
  • 项目类别:
Mechanisms that couple irregular development of fetal melanoblasts to premature exhaustion of adult melanocyte stem cells
胎儿黑色素细胞的不规则发育与成体黑色素细胞干细胞过早耗竭的机制
  • 批准号:
    10620343
  • 财政年份:
    2021
  • 资助金额:
    $ 55.57万
  • 项目类别:
Mechanisms that couple irregular development of fetal melanoblasts to premature exhaustion of adult melanocyte stem cells
胎儿黑色素细胞的不规则发育与成体黑色素细胞干细胞过早耗竭的机制
  • 批准号:
    10306200
  • 财政年份:
    2021
  • 资助金额:
    $ 55.57万
  • 项目类别:
Mechanisms that Couple Chromatin Modifications to Transcription
将染色质修饰与转录结合起来的机制
  • 批准号:
    10206349
  • 财政年份:
    2021
  • 资助金额:
    $ 55.57万
  • 项目类别:
Mechanisms that Couple Chromatin Modifications to Transcription
将染色质修饰与转录结合起来的机制
  • 批准号:
    10581271
  • 财政年份:
    2021
  • 资助金额:
    $ 55.57万
  • 项目类别:
Mechanisms that Couple Chromatin Modifications to Transcription
将染色质修饰与转录结合起来的机制
  • 批准号:
    10618263
  • 财政年份:
    2021
  • 资助金额:
    $ 55.57万
  • 项目类别:
Mechanisms that Couple Chromatin Modifications to Transcription
将染色质修饰与转录结合起来的机制
  • 批准号:
    10404991
  • 财政年份:
    2021
  • 资助金额:
    $ 55.57万
  • 项目类别:
Oxytocin to Enhance Alcohol Behavioral Couple Therapy
催产素增强酒精行为夫妻疗法
  • 批准号:
    10443676
  • 财政年份:
    2018
  • 资助金额:
    $ 55.57万
  • 项目类别:
Oxytocin to Enhance Alcohol Behavioral Couple Therapy
催产素增强酒精行为夫妻疗法
  • 批准号:
    10204870
  • 财政年份:
    2018
  • 资助金额:
    $ 55.57万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了