How does a chimeric partition machine mediate chromosome segregation in Archaea?

嵌合分配机如何介导古细菌中的染色体分离?

基本信息

  • 批准号:
    BB/M007839/1
  • 负责人:
  • 金额:
    $ 44.7万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Archaea evolved as the third domain of life billions of years ago, but they are a relatively recent addition to the map of the universal tree of living organisms. Their discovery 37 years ago represented a major biological milestone. Archaea are unicellular organisms that populate our planet together with bacteria and eukaryotes. Both bacteria and archaea are prokaryotes, i.e. their genetic material is not wrapped by a membrane into a separate compartment, called nucleus, which is instead a hallmark of eukaryotes (baker yeast, fungi, plants, animals and humans to mention some). Initially isolated from extreme ecosystems, archaea are now known to be ubiquitous, constituting a considerable fraction of the biosphere. For example, it has been reported that the world ocean alone contains approximately 1.3 x 10 to the 28 archaeal cells: this is an enormous number. To provide a comparison, the estimated number of grains of sand on all the beaches on earth is 7.5 x 10 to the 18, a quantity still much smaller as compared with that of marine archaeal cells. Their ubiquity and abundance make them key players in regulating global biogeochemical cycles on Earth. From a functional and mechanistic standpoint, archaea are a mosaic of tesserae from bacteria and eukaryotes, but they are also characterized by unique molecular features like methane production.Thermophilic archaea are super microbes thriving at 80 degrees C and higher temperatures in hot springs, volcanoes, deep sea vents and exhibiting unusual properties, which make these organisms valuable for the development of novel biotechnological applications, but also extremely interesting for basic studies on life pushed to extremes. The heat resistant molecules found in thermophilic archaea (for example proteins and lipidic chains) have revealed to us that the boundaries of life as we know it can be pushed much further than previously anticipated. Their ability to grow in extreme environments where no other terrestrial organism can survive has also rejuvenated hopes of discovering extraterrestrial life on inhospitable planets.Despite the significant progress made in decoding molecular mechanisms in these organisms in the last three decades, to date little information is available on the fundamental process of chromosome segregation in archaea and the subject remains a black box awaiting investigation. Genome segregation is a crucial stage of the life cycle of every cell: the genetic material is first duplicated, then separated and equally distributed into the two daughter cells. We intend to dissect this process in the thermophilic archaeon Sulfolobus solfataricus, whose genome encodes for two proteins, SegA and SegB, which interact to form a simple chromosome segregation machine. The proposed project intends to discover the mechanisms adopted by the SegAB complex to mediate the separation and equi-distribution of chromosomes in S. solfataricus at cell division. We will shed light on the localization of these proteins in the cell by fusing them to a heat stable fluorescent protein and using conventional microscopy and a novel imaging technique, called super resolution microscopy. This approach will allow us to acquire a high-resolution picture of the structures formed by SegA and SegB in the cell. We also wish to investigate the interaction of each of the proteins with DNA to map their binding sites on the chromosome and to understand how these associations result in chromosome segregation. Another aim of the work is to identify other proteins that interact with the SegAB complex inside the cell: two different screening strategies will be expolited, one looking for genes and the other looking for proteins of potential partners. In addition, we want to determine the three-dimensional structure of SegA and SegB. The multiple pieces of the jigsaw deriving from the various investigations will be combined to generate a detailed picture of chromosome segregation in S. solfataricus
古生物在数十亿年前进化为生命的第三个领域,但它们是生物体宇宙树地图上相对较新的成员。他们37年前的发现是一个重要的生物学里程碑。微生物是单细胞生物,与细菌和真核生物一起居住在我们的星球上。细菌和古细菌都是原核生物,即它们的遗传物质没有被膜包裹到一个单独的隔室中,称为细胞核,这是真核生物的标志(面包酵母,真菌,植物,动物和人类等等)。古生菌最初与极端生态系统隔离,现在已知它们无处不在,构成生物圈的相当大一部分。例如,据报道,仅世界海洋就含有大约1.3 × 10的28个古细菌细胞:这是一个巨大的数字。为了提供比较,地球上所有海滩上的沙粒数量估计为7.5 × 10的18次方,与海洋古细菌细胞相比,这个数量仍然要小得多。它们的普遍性和丰富性使它们成为调节地球上全球生物地球化学循环的关键角色。从功能和机制的角度来看,古生菌是来自细菌和真核生物的镶嵌体,但它们也具有独特的分子特征,如甲烷生产。嗜热古生菌是超级微生物,在80摄氏度和更高的温度下在温泉,火山,深海喷口中蓬勃发展,并表现出不同寻常的特性,这使得这些生物对开发新的生物技术应用具有价值,但也非常有趣的基础研究的生命推向极端。在嗜热古菌中发现的耐热分子(例如蛋白质和链)向我们揭示了我们所知道的生命边界可以比以前预期的更进一步。古生菌能够在其他地球生物无法生存的极端环境中生长,这也重新燃起了在不适宜居住的行星上发现外星生命的希望。尽管在过去的三十年里,在解码这些生物的分子机制方面取得了重大进展,但迄今为止,关于古生菌染色体分离的基本过程的信息仍然很少,这个主题仍然是一个等待调查的黑匣子。基因组分离是每个细胞生命周期的关键阶段:遗传物质首先复制,然后分离并平均分配到两个子细胞中。我们打算在嗜热古菌Sulfolobus solfataricus,其基因组编码的两种蛋白质,SegA和SegB,相互作用,形成一个简单的染色体分离机解剖这一过程。该项目旨在发现SegAB复合物介导S.在细胞分裂时。我们将通过将这些蛋白质与热稳定荧光蛋白融合,并使用传统显微镜和一种称为超分辨率显微镜的新型成像技术,来阐明这些蛋白质在细胞中的定位。这种方法将使我们能够获得细胞中SegA和SegB形成的结构的高分辨率图像。我们还希望研究每种蛋白质与DNA的相互作用,以绘制它们在染色体上的结合位点,并了解这些关联如何导致染色体分离。这项工作的另一个目的是确定与细胞内SegAB复合物相互作用的其他蛋白质:将采用两种不同的筛选策略,一种是寻找基因,另一种是寻找潜在伴侣的蛋白质。此外,我们还想确定SegA和SegB的三维结构。从不同的研究中得到的拼图的多个片段将被结合起来,以产生一个详细的图片染色体分离在S。solfataricus

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Abstract 1346: Structures of SegA and SegB proteins insights into chromosome segregation in archaea
摘要 1346:SegA 和 SegB 蛋白的结构深入了解古细菌染色体分离
Driving Apart and Segregating Genomes in Archaea.
  • DOI:
    10.1016/j.tim.2016.07.001
  • 发表时间:
    2016-12
  • 期刊:
  • 影响因子:
    15.9
  • 作者:
    Barilla, Daniela
  • 通讯作者:
    Barilla, Daniela
Genome segregation in heat-loving archaea
喜热古细菌的基因组分离
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Barilla` D
  • 通讯作者:
    Barilla` D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniela Barillà其他文献

The bacterial segrosome: a dynamic nucleoprotein machine for DNA trafficking and segregation
细菌隔离子体:一种用于 DNA 运输和分离的动态核蛋白机器
  • DOI:
    10.1038/nrmicro1342
  • 发表时间:
    2006-02-01
  • 期刊:
  • 影响因子:
    103.300
  • 作者:
    Finbarr Hayes;Daniela Barillà
  • 通讯作者:
    Daniela Barillà

Daniela Barillà的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniela Barillà', 18)}}的其他基金

Probing the mechanisms that couple genome segregation to chromosome organization in Archaea
探讨古细菌基因组分离与染色体组织的耦合机制
  • 批准号:
    BB/X00645X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Research Grant
A novel DNA segregation model system from Archaea revealing bacterial and eukaryotic linkages
古细菌的新型 DNA 分离模型系统揭示了细菌和真核生物的联系
  • 批准号:
    BB/R006369/1
  • 财政年份:
    2018
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Research Grant
Novel molecular targets to combat antibiotic resistance: probing the assembly dynamics of a bacterial mitotic spindle
对抗抗生素耐药性的新分子靶点:探索细菌有丝分裂纺锤体的组装动力学
  • 批准号:
    G0801162/1
  • 财政年份:
    2009
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Research Grant
Probing DNA segregation in archaea: molecular dissection of an atypical tricistronic partition system from Sulfolobus
探索古细菌中的 DNA 分离:来自硫化叶菌的非典型三顺反子分配系统的分子解剖
  • 批准号:
    BB/F012004/1
  • 财政年份:
    2008
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Research Grant
A prototype of a bacterial mitotic spindle: moving DNA molecules apart through a polymerization-based engine
细菌有丝分裂纺锤体的原型:通过基于聚合的引擎将 DNA 分子分开
  • 批准号:
    G0400287/2
  • 财政年份:
    2006
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Research Grant

相似国自然基金

衍射光学三维信息加密与隐藏的研究
  • 批准号:
    60907004
  • 批准年份:
    2009
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

How does the brain process conflicting information?
大脑如何处理相互矛盾的信息?
  • 批准号:
    DE240100614
  • 财政年份:
    2024
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Discovery Early Career Researcher Award
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Training Grant
The excess gas paradox at volcanoes: does CO2 favor gas accumulation in mafic magmas?
火山中的过量气体悖论:二氧化碳是否有利于镁铁质岩浆中的气体积累?
  • 批准号:
    2322935
  • 财政年份:
    2024
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Continuing Grant
Does chronic thyroid inflammation explain persistent symptoms in Hashimoto thyroiditis?
慢性甲状腺炎症是否可以解释桥本甲状腺炎的持续症状?
  • 批准号:
    MR/Z503617/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Research Grant
Does deformation lead to misinformation? How much can granitic rocks deform before accessory minerals are geochemically disturbed?
变形会导致错误信息吗?
  • 批准号:
    2342159
  • 财政年份:
    2024
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Standard Grant
Does the functional load principle predict to how non-native English speakers assess the pronunciation intelligibility of Japanese non-native English speakers?
功能负荷原则是否可以预测非英语母语人士如何评估日语非英语母语人士的发音清晰度?
  • 批准号:
    24K04051
  • 财政年份:
    2024
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Meiosis in Plasmodium: How does it work?
疟原虫减数分裂:它是如何运作的?
  • 批准号:
    BB/X014681/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Research Grant
How does membrane lipid remodelling enable intracellular survival of B. cenocepacia?
膜脂重塑如何使新洋葱伯克霍尔德氏菌在细胞内存活?
  • 批准号:
    BB/X01651X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: EAR-PF: Does topographic stress connect subsurface to surface through influencing bedrock strength, clast size, and landslides?
博士后奖学金:EAR-PF:地形应力是否通过影响基岩强度、碎屑尺寸和山体滑坡将地下与地表连接起来?
  • 批准号:
    2305448
  • 财政年份:
    2024
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Fellowship Award
When does a supershedder become a superspreader?: The impact of individual-level heterogeneities on population-level transmission and spread
超级传播者何时成为超级传播者?:个体水平异质性对群体水平传播和传播的影响
  • 批准号:
    NE/X01424X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.7万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了