Pushing the Envelope: Defining a Cytoskeletal-like Protein Required for Spore Development
突破极限:定义孢子发育所需的类细胞骨架蛋白
基本信息
- 批准号:BB/X008533/1
- 负责人:
- 金额:$ 59.28万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Cell shape is an important feature of living organisms, linked to their function and ability to survive in the environment. In bacteria, the maintenance of cell shape is governed by the assembly and remodelling of their external layers, known as the cell envelope. Known antibiotics target the bacterial cell envelope and affect bacterial cell shape, leading to reduced bacterial survival and death. Thus, understanding the mechanisms underlying bacterial cell shape and cell envelope assembly can lead to new opportunities in drug development. In this project we focus on a new molecular process that controls the cell shape and cell envelope assembly of bacterial endospores (spores), one of the toughest cell types on Earth. Spores are highly-resistant, dormant cells produced by some bacteria to survive starvation stress. Spore can persist in the environment for extended periods of time. In response to nutrient availability, or other signals, spores "reactivate" into growing bacteria through a process called germination. Spores have a defined shape and harbor a complex, multilayered cell envelope that contributes to their resistance properties and persistence in the environment. Some bacteria produce spores that underlie recurring and often deadly infections in humans, animals and pollinator insects. Spores can also contaminate food, compromise food safety and lead to food poisoning. Importantly, spores are not affected by current antibiotics and they resist common sterilisation strategies that kill growing bacteria. While multiple studies have contributed to defining the complex composition of the spore envelope, less is known about the molecular mechanisms that regulate spore shape and the assembly of the spore envelope, which appear to be connected. By bringing together a team of experts in molecular genetics, biochemistry, cell biology and structural biology methods, this project expects to define a novel molecular process required for the assembly of the spore envelope and the maintenance of spore shape. Preliminary data suggest this mechanism employs a protein that may function like a structural scaffold on the inside of the spore and contributes to spore shape and assembly of an important spore envelope layer, the cortex. The cortex not only contributes to spore resistance properties but also plays a critical role in their exit from dormancy through germination. The project's primary expected outcome is new knowledge of how bacteria transform into spores. The benefit of this new knowledge is that it will deepen and grow our understanding of bacterial spores and how bacteria build the highly-resistant spore cell envelope. This knowledge may provide a platform from which biotechnology industries could explore innovative strategies for controlling spore-forming bacteria. This project will also provide training to the next generation of microbiologists, securing Britain's future in Microbiology, a field that is critical to animal, human and environmental health, as well as food safety.
细胞形状是生物体的一个重要特征,与它们在环境中的功能和生存能力有关。在细菌中,细胞形状的维持是由它们的外层(称为细胞包膜)的组装和重塑控制的。已知的抗生素靶向细菌细胞包膜并影响细菌细胞形状,导致细菌存活和死亡减少。因此,了解细菌细胞形状和细胞包膜组装的机制可以为药物开发带来新的机会。在这个项目中,我们专注于一个新的分子过程,控制细菌内生孢子(孢子)的细胞形状和细胞包膜组装,这是地球上最坚韧的细胞类型之一。孢子是由一些细菌产生的高抗性休眠细胞,以在饥饿压力下生存。孢子可以在环境中持续很长一段时间。作为对营养物质可用性或其他信号的响应,孢子通过一个称为萌发的过程“重新激活”成生长中的细菌。孢子有一个明确的形状和港口复杂的,多层的细胞包膜,有助于他们的抵抗力和持久性的环境。一些细菌产生孢子,这些孢子是人类、动物和传粉昆虫反复发生且往往致命的感染的基础。孢子也会污染食物,危害食物安全,导致食物中毒。重要的是,孢子不受当前抗生素的影响,并且它们抵抗杀死生长细菌的常见灭菌策略。虽然多项研究有助于定义孢子包膜的复杂组成,但对调节孢子形状和孢子包膜组装的分子机制知之甚少,这些机制似乎是相互联系的。通过汇集分子遗传学,生物化学,细胞生物学和结构生物学方法的专家团队,该项目预计将定义组装孢子包膜和维持孢子形状所需的新分子过程。初步数据表明,这种机制采用了一种蛋白质,这种蛋白质可能在孢子内部起到结构支架的作用,并有助于孢子形状和重要孢子包膜层(皮层)的组装。皮层不仅有助于孢子抗性特性,而且在它们通过萌发退出休眠中起关键作用。该项目的主要预期成果是关于细菌如何转化为孢子的新知识。这些新知识的好处是,它将加深和发展我们对细菌孢子以及细菌如何构建高抗性孢子细胞包膜的理解。这些知识可以提供一个平台,生物技术行业可以从中探索控制孢子形成细菌的创新战略。该项目还将为下一代微生物学家提供培训,确保英国在微生物学领域的未来,这一领域对动物,人类和环境健康以及食品安全至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Rodrigues其他文献
Pitfalls in the assessment of disseminated intravascular coagulation in patients on dabigatran
- DOI:
10.1016/j.pathol.2020.10.017 - 发表时间:
2021-08-01 - 期刊:
- 影响因子:
- 作者:
Gurbaksh Singh Kanda;Wai Khoon Ho;Christopher Rodrigues;Anna Bousounis;Chris Hogan - 通讯作者:
Chris Hogan
Fisb-Lipid Interactions During Sporulation in <em>Bacillus Subtilis</em>
- DOI:
10.1016/j.bpj.2019.11.3044 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Martha Braun;Ane Landajuela;Christopher Rodrigues;Thierry Doan;David Rudner;Erdem Karatekin - 通讯作者:
Erdem Karatekin
Mothers’ and Fathers’ Time Spent with Children in the U.S.: Variations by Race/Ethnicity Within Income from 2003 to 2013
美国父母花在孩子身上的时间:2003 年至 2013 年收入中不同种族/民族的变化
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
L. Gennetian;Christopher Rodrigues - 通讯作者:
Christopher Rodrigues
Christopher Rodrigues的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
NEPhos_Phosphoregulation of ESCRT-III during nuclear envelope reformation
NEPhos_ESCRT-III 核膜重构过程中的磷酸调节
- 批准号:
EP/Z00098X/1 - 财政年份:2025
- 资助金额:
$ 59.28万 - 项目类别:
Fellowship
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
- 批准号:
BB/X007669/1 - 财政年份:2024
- 资助金额:
$ 59.28万 - 项目类别:
Research Grant
Exploiting protein import to interrogate energy transduction through the bacterial cell envelope
利用蛋白质输入来询问通过细菌细胞包膜的能量转导
- 批准号:
BB/X016366/1 - 财政年份:2024
- 资助金额:
$ 59.28万 - 项目类别:
Research Grant
Chameleon-Inspired Building Envelope for the Australian Building Sector
澳大利亚建筑行业受变色龙启发的建筑围护结构
- 批准号:
DE240101422 - 财政年份:2024
- 资助金额:
$ 59.28万 - 项目类别:
Discovery Early Career Researcher Award
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
- 批准号:
BB/X00760X/1 - 财政年份:2024
- 资助金额:
$ 59.28万 - 项目类别:
Research Grant
Changes in structure and biogenesis of Gram-negative envelope following a polymyxin challenge
多粘菌素攻击后革兰氏阴性包膜的结构和生物发生的变化
- 批准号:
BB/X000370/1 - 财政年份:2023
- 资助金额:
$ 59.28万 - 项目类别:
Research Grant
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 59.28万 - 项目类别:
Studentship
Experimental Performance Characterisation and Measurement of Unstart Force on a Scramjet Intake across the Operational Envelope
超燃冲压发动机整个运行范围内进气口的启动力的实验性能表征和测量
- 批准号:
2887199 - 财政年份:2023
- 资助金额:
$ 59.28万 - 项目类别:
Studentship
Precision Glycoengineering of an HCV Envelope-Based Nanoparticle Vaccine
HCV 包膜纳米颗粒疫苗的精密糖工程
- 批准号:
10759994 - 财政年份:2023
- 资助金额:
$ 59.28万 - 项目类别:
Probing functional HIV-1 envelope glycoprotein conformations with novel potent CD4-mimetic compounds
用新型有效的 CD4 模拟化合物探测功能性 HIV-1 包膜糖蛋白构象
- 批准号:
10762703 - 财政年份:2023
- 资助金额:
$ 59.28万 - 项目类别: