Understanding biomineralisation in the fish dermal skeleton and its role in health and development
了解鱼类真皮骨骼中的生物矿化及其在健康和发育中的作用
基本信息
- 批准号:BB/X009904/1
- 负责人:
- 金额:$ 51.63万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
By 2020 global fish production had already exceeded 179 million tonnes, and is thought to contribute £600 million to the British economy. In addition to this, zebrafish are the second most highly used species in biomedical research, after mouse. Therefore, understanding mechanisms relating to health and wellbeing of fish is vital.Much of fish development echoes that of humans and mammals in many ways. For example, the requirement for a mineralised skeleton to provide organ protection, mobility, and calcium-phosphorous homeostasis. However, unlike mammals, fish often possess a second mineralised skeleton, by way of their scales. In addition to the roles listed above, this dermal skeleton provides protection from the hostile external environment from injury and infection. Skeletal mineralisation has been shown to be detrimentally impacted in rapidly grown animals of agricultural importance, such as pigs and chickens, as well as several human disorders. In the race to produce more sustainable, cheaper protein, research into how these farming methods might affect calcium maintenance in these fish (via scale mineralisation), and how that may impact on their health and wellbeing is sorely lacking. We know that these scales mineralise in a similar way to bones, but for both bones and scales, we don't fully understand how the underlying processes lead to mineralisation. Mineralisation begins with an extracellular collagen rich matrix, which confers toughness to the tissue and acts as a scaffold on which the mineral component, hydroxyapatite (calcium - phosphate complex) is embedded, conferring stiffness to the composite material. How hydroxyapatite is initially formed has been widely debated for many years, but it is now considered to centre upon the concentration of calcium and phosphate within matrix vesicles which are themselves released by bone and scale cells. Matrix vesicles are small (100-300nm) vesicles, which contain a number of proteins responsible for the accumulation of calcium and phosphate. It has not been possible to ascertain how matrix vesicles are released from the cell. I hypothesise that matrix vesicles are released from the surface of the cell, following cytoskeletal rearrangement as identified in a number of cell membrane-based processes. I propose developing a scheme of work that will allow me to understand the importance of mineralisation in fish health and wellbeing, as well as having broader implications for the understanding of mineralisation at the molecular level, across species. In this fellowship, I will develop robust imaging techniques to image matrix vesicles. Using live cell imaging, I will manipulate proteins of interest, to elucidate their role in vesicle biogenesis and trafficking of proteins. I will further develop these imaging techniques to study matrix vesicle biogenesis in fish scales. Furthermore, I will use fish lines with a range of mineralisation phenotypes to study the importance of scale mineralisation in wound healing for fish and develop preliminary research into the extent of mineralisation changes in aquaculture species bred for meat. These studies will offer opportunities for high impact publications within this fellowship, as well as forming the basis for future senior fellowships, grant applications and studentships.
到2020年,全球水产品产量已经超过1.79亿吨,被认为为英国经济贡献了6亿GB。除此之外,斑马鱼是生物医学研究中使用率第二高的物种,仅次于老鼠。因此,了解与鱼类健康和福祉有关的机制是至关重要的。鱼类的许多发育在许多方面都与人类和哺乳动物的发育相呼应。例如,对矿化骨骼提供器官保护、流动性和钙磷动态平衡的要求。然而,与哺乳动物不同的是,鱼通常通过其鳞片拥有第二个矿化骨骼。除了以上列出的角色外,这种真皮骨架还提供保护,使其免受外界恶劣环境的伤害和感染。骨骼矿化已被证明在猪和鸡等具有农业重要性的快速生长动物以及几种人类疾病中受到有害影响。在生产更可持续、更便宜的蛋白质的竞赛中,关于这些养殖方法可能如何影响这些鱼类的钙维持(通过鳞片矿化),以及这可能如何影响它们的健康和福祉的研究严重缺乏。我们知道这些鳞片的矿化方式与骨骼相似,但对于骨骼和鳞片,我们并不完全了解潜在的过程是如何导致矿化的。矿化始于细胞外富含胶原蛋白的基质,它赋予组织韧性,并充当支架,矿物质成分羟基磷灰石(钙磷复合体)嵌入其上,赋予复合材料硬度。羟基磷灰石最初是如何形成的,多年来一直存在广泛的争论,但现在人们认为它集中在基质小泡中钙和磷的浓度,而基质小泡本身由骨和鳞片细胞释放。基质小泡是一种小的(100-300 nm)小泡,它包含许多负责钙和磷积累的蛋白质。目前还不可能确定基质囊泡是如何从细胞中释放出来的。我假设,在细胞骨架重排之后,基质小泡从细胞表面释放出来,正如许多基于细胞膜的过程所确定的那样。我建议制定一个工作计划,使我能够理解矿化对鱼类健康和福祉的重要性,并对在分子水平上、跨物种理解矿化具有更广泛的影响。在这个项目中,我将开发强大的成像技术来对基质小泡进行成像。利用活细胞成像,我将操纵感兴趣的蛋白质,以阐明它们在囊泡生物发生和蛋白质运输中的作用。我将进一步发展这些成像技术来研究鱼鳞中基质囊泡的生物发生。此外,我将使用具有一系列矿化表型的鱼线来研究鳞片矿化在鱼类伤口愈合中的重要性,并对养殖肉类的水产养殖物种矿化变化的程度进行初步研究。这些研究将为这一奖学金范围内的高影响力出版物提供机会,并为未来的高级奖学金、补助金申请和学生奖学金奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Louise Stephen其他文献
Louise Stephen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Mechanistically understanding biomineralisation and ancient ocean chemistry changes to facilitate robust climate model validation
从机械角度理解生物矿化和古代海洋化学变化,以促进稳健的气候模型验证
- 批准号:
EP/Y034252/1 - 财政年份:2023
- 资助金额:
$ 51.63万 - 项目类别:
Research Grant
Alternative Biomineralisation for Concrete without cement (ABioC)
无水泥混凝土的替代生物矿化 (ABioC)
- 批准号:
EP/Y015959/1 - 财政年份:2023
- 资助金额:
$ 51.63万 - 项目类别:
Fellowship
The origin of biomineralisation: oxygenation, nutrient cycling, and seawater chemistry
生物矿化的起源:氧合、养分循环和海水化学
- 批准号:
2743507 - 财政年份:2022
- 资助金额:
$ 51.63万 - 项目类别:
Studentship
How do molluscs build their shells? Deciphering calcium transport mechanisms in shellfish biomineralisation using genome-editing
软体动物如何建造贝壳?
- 批准号:
2607462 - 财政年份:2021
- 资助金额:
$ 51.63万 - 项目类别:
Studentship
Multistressor impacts of ocean acidification and warming on regeneration and biomineralisation in coastal sea urchins
海洋酸化和变暖对沿海海胆再生和生物矿化的多重压力影响
- 批准号:
2600238 - 财政年份:2021
- 资助金额:
$ 51.63万 - 项目类别:
Studentship
Fungal-Induced Biomineralisation for Concrete Repair
用于混凝土修复的真菌诱导生物矿化
- 批准号:
2514013 - 财政年份:2021
- 资助金额:
$ 51.63万 - 项目类别:
Studentship
Understanding structure and function of biomineralisation protein MmsFcc for green nanoparticle manufacture
了解用于绿色纳米粒子制造的生物矿化蛋白 MmsFcc 的结构和功能
- 批准号:
2453322 - 财政年份:2020
- 资助金额:
$ 51.63万 - 项目类别:
Studentship
An understanding of biomineralisation pathways is key to predict climate change impact on aquaculture.
了解生物矿化途径是预测气候变化对水产养殖影响的关键。
- 批准号:
NE/N01409X/2 - 财政年份:2018
- 资助金额:
$ 51.63万 - 项目类别:
Fellowship
Investigation of pink crinoids and aragonitic bryozoans in the Ordovician: implications for oceanography, biomineralisation, and diagenetic modification
奥陶系粉红色海百合和文石苔藓虫的研究:对海洋学、生物矿化和成岩作用改造的影响
- 批准号:
476220-2015 - 财政年份:2017
- 资助金额:
$ 51.63万 - 项目类别:
Postgraduate Scholarships - Doctoral
An understanding of biomineralisation pathways is key to predict climate change impact on aquaculture.
了解生物矿化途径是预测气候变化对水产养殖影响的关键。
- 批准号:
NE/N01409X/1 - 财政年份:2016
- 资助金额:
$ 51.63万 - 项目类别:
Fellowship














{{item.name}}会员




