Integrative Approaches for Characterising Small-Molecule Binding to Disordered Proteins

表征小分子与无序蛋白质结合的综合方法

基本信息

  • 批准号:
    BB/X009955/1
  • 负责人:
  • 金额:
    $ 51.8万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Many processes in biology (e.g. signalling, stimulation) and how we manipulate them (e.g. pesticides, drugs) depend, at the molecular level, on large biomolecules called proteins, and how they interact with smaller chemicals (or 'small molecules').Most proteins (termed 'structured proteins') adopt well-defined 3D shapes which are associated with a specific function. Generally, small molecules insert themselves into grooves on the surfaces of structured proteins, which in turn, alter protein movement and function. Often, this is referred to as the 'lock-and-key' binding mechanism because the small molecule fits into the protein's grooves much like a key fits into a lock.Nevertheless, many proteins (including those from humans, viruses, & plants) never adopt a single shape and instead rapidly interconvert between many shapes. These proteins, called 'disordered proteins' lack long-lived grooves ('locks') to which small molecules ('keys') can bind. For many decades it was believed that small molecules do not interact with disordered proteins, because it was unclear how these interactions could take place. Nevertheless, recent work suggests that disordered proteins can indeed bind small molecules, but the mechanisms differ from 'lock-and-key' binding. Instead, disordered proteins 'dance' with small molecules, such that each protein shape interacts with the small molecule in a unique way. I was one of the first to describe these new mechanisms (for a disordered protein involved in Alzheimer's disease), but there is still much to be understood about the molecular details of binding. The greatest bottleneck to addressing this gap is the lack of available tools to study these processes. As a BBSRC Fellow, I will combine two approaches, one experimental and one computational, towards the development of new interdisciplinary tools. The experimental technique is called Nuclear Magnetic Resonance spectroscopy (NMR), in which strong magnetic fields are used to study the physical and chemical properties of proteins and small molecules. Most NMR experiments were developed for structured proteins. Thus, I will establish new methods specifically for the application of small-molecule binding to disordered proteins. I will also employ a computational approach called molecular dynamics (MD) simulations, in which I will model the movement of disordered proteins and small molecules using supercomputers. The MD simulations will allow me to create 'movies' to 'see' how small molecules and disordered proteins interact with one-another, which is valuable insight that I cannot get from NMR alone. Nevertheless, certain approximations must be made in my models to make the calculations affordable, and these can lead to inaccuracies. Thus, I will develop new tools that allow me to incorporate experimental NMR data into the simulations to improve accuracy. By combining both NMR and MD simulations, I can overcome the limitations of each technique alone and provide new insight into the molecular mechanisms of how disordered proteins interact with small molecules. I will apply these tools to specific disordered proteins to discover new small-molecule binding mechanisms. For example, the Non-Structural protein 5A (NS5A) from hepatitis C virus interacts with several small molecules, including an antiviral, but the mechanisms of how these molecules bind (and how the antiviral works) remain unclear. I will also apply these tools to study a human disordered protein called FUsed in Sarcoma (FUS). FUS undergoes a phenomenon termed 'liquid-liquid phase separation' which is very similar to the formation of oil droplets in water. In the presence of high concentrations of certain small molecules, called 'nucleotides', FUS does not undergo phase separation, but it is not clear why. My new tools will allow me to 'see' and understand these binding mechanisms, discover new fundamental biology, and exploit it towards the development of novel biotechnology.
生物学中的许多过程(例如信号传导、刺激)以及我们如何操纵它们(例如杀虫剂、药物)在分子水平上取决于称为蛋白质的大生物分子,以及它们如何与较小的化学物质(或“小分子”)相互作用。大多数蛋白质(称为“结构蛋白质”)采用与特定功能相关的明确定义的3D形状。一般来说,小分子插入结构蛋白表面的凹槽中,这反过来又改变了蛋白质的运动和功能。通常,这被称为“锁和钥匙”结合机制,因为小分子适合蛋白质的凹槽,就像钥匙适合锁一样。然而,许多蛋白质(包括来自人类,病毒和植物的蛋白质)从不采用单一的形状,而是在许多形状之间快速相互转换。这些被称为“无序蛋白质”的蛋白质缺乏小分子(“钥匙”)可以结合的长寿命凹槽(“锁”)。几十年来,人们一直认为小分子不会与无序的蛋白质相互作用,因为不清楚这些相互作用是如何发生的。然而,最近的研究表明,无序蛋白质确实可以结合小分子,但机制不同于“锁和钥匙”结合。相反,无序的蛋白质与小分子“跳舞”,使得每个蛋白质形状以独特的方式与小分子相互作用。我是最早描述这些新机制的人之一(针对阿尔茨海默病中的一种无序蛋白质),但关于结合的分子细节仍有很多需要了解。解决这一差距的最大瓶颈是缺乏研究这些过程的可用工具。作为一个BBSRC研究员,我将结合联合收割机两种方法,一个实验和一个计算,对新的跨学科工具的发展。实验技术被称为核磁共振光谱(NMR),其中强磁场用于研究蛋白质和小分子的物理和化学性质。大多数NMR实验是针对结构蛋白质开发的。因此,我将建立新的方法,专门用于小分子结合无序蛋白质的应用。我还将采用一种称为分子动力学(MD)模拟的计算方法,在这种方法中,我将使用超级计算机模拟无序蛋白质和小分子的运动。MD模拟将使我能够创建“电影”来“看到”小分子和无序蛋白质如何相互作用,这是我无法单独从NMR获得的有价值的见解。然而,在我的模型中必须进行某些近似,以使计算负担得起,而这些可能导致不准确。因此,我将开发新的工具,使我能够将实验NMR数据纳入模拟,以提高准确性。通过结合NMR和MD模拟,我可以单独克服每种技术的局限性,并对无序蛋白质如何与小分子相互作用的分子机制提供新的见解。我将把这些工具应用于特定的无序蛋白质,以发现新的小分子结合机制。例如,丙型肝炎病毒的非结构蛋白5A(NS 5A)与几种小分子相互作用,包括抗病毒药物,但这些分子如何结合(以及抗病毒药物如何起作用)的机制仍不清楚。我还将应用这些工具来研究一种称为肉瘤融合蛋白(FUS)的人类紊乱蛋白。FUS经历了一种称为“液-液相分离”的现象,这与水中油滴的形成非常相似。在高浓度的某些小分子(称为“核苷酸”)存在下,FUS不会发生相分离,但原因尚不清楚。我的新工具将使我能够“看到”和理解这些结合机制,发现新的基础生物学,并利用它来开发新的生物技术。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Micromolar fluoride contamination arising from glass NMR tubes and a simple solution for biomolecular applications
玻璃核磁共振管产生的微摩尔氟化物污染以及生物分子应用的简单解决方案
  • DOI:
    10.1101/2024.02.12.579991
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matwani K
  • 通讯作者:
    Matwani K
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gabriella Tamar Harris Heller其他文献

Gabriella Tamar Harris Heller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Investigating bioengineering approaches to produce immuno-modulatory mesenchymal stromal cells and their extracellular vesicle
研究生产免疫调节间充质基质细胞及其细胞外囊泡的生物工程方法
  • 批准号:
    2608627
  • 财政年份:
    2025
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Studentship
New approaches to training deep probabilistic models
训练深度概率模型的新方法
  • 批准号:
    2613115
  • 财政年份:
    2025
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Studentship
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326020
  • 财政年份:
    2024
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326021
  • 财政年份:
    2024
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Standard Grant
Multiscale Approaches And Scalability Within Climate Change-heritage Risk Assessments
气候变化遗产风险评估中的多尺度方法和可扩展性
  • 批准号:
    AH/Z000084/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Research Grant
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
  • 批准号:
    EP/Y014030/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Research Grant
C-NEWTRAL: smart CompreheNsive training to mainstrEam neW approaches for climaTe-neutRal cities through citizen engAgement and decision-making support
C-NEWTRAL:智能综合培训,通过公民参与和决策支持将气候中和城市的新方法纳入主流
  • 批准号:
    EP/Y032640/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Research Grant
NEM-EMERGE: An integrated set of novel approaches to counter the emergence and proliferation of invasive and virulent soil-borne nematodes
NEM-EMERGE:一套综合的新方法来对抗入侵性和剧毒土传线虫的出现和扩散
  • 批准号:
    10080598
  • 财政年份:
    2024
  • 资助金额:
    $ 51.8万
  • 项目类别:
    EU-Funded
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
  • 批准号:
    10097944
  • 财政年份:
    2024
  • 资助金额:
    $ 51.8万
  • 项目类别:
    EU-Funded
Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity
陷入困境:采用多尺度和跨学科方法解决细小沉积物难题,支持全球淡水生物多样性
  • 批准号:
    MR/Y020200/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了