Japan_IPAP: Engineering synthetic neuromuscular junctions to drive the autonomous function of biohybrid robots

Japan_IPAP:工程合成神经肌肉接头以驱动生物混合机器人的自主功能

基本信息

  • 批准号:
    BB/X012581/1
  • 负责人:
  • 金额:
    $ 19.25万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Bottom-up synthetic biology aims to reproduce the structures and behaviours of cellular organisms by combining molecules that mimic the structural, functional and information containing roles present in biology. These structures are known as synthetic cells, and they can act as a framework to study biological processes (such as movement or replication), as well as act as miniature test-tubes, within which chemical and biochemical reactions can be carried out.Over the last 5-10 years, synthetic cells have been developed that can produce protein biomolecules, that if sensed by living cells, can result in a change in cell behaviour. The assembly of defined interfaces between synthetic and living cells could therefore act to control biological systems, mimicking the organisation found in biological synapses where one cell is positioned close to a second, facilitating controlled chemical signalling between the cells. Such structures are essential for communication between the nervous system and muscles, where synaptic communication at the neuromuscular junction (NMJ) controls the contraction of muscles in higher order animals. In biology, muscle tissue enables animals to move and undertake complex tasks. This has led to the application of engineered muscle tissue in another nascent area of bioengineering - that of biohybrid robots. Biohybrids utilise biological components as a core part of the robot, for example controlling the contraction of muscle tissue to power a biohybrid robot capable of picking up and releasing an object. However, conventional approaches to activating the robot rely on using electrical signals to activate muscle contraction. Whilst this results in successful activation, this approach is damaging to the muscle tissue, limiting the lifetime of the robot and the implementation of this approach in larger biohybrid devices.This project aims to assemble synthetic cell - muscle tissue interfaces, where expression and release of a communication protein, Agrin, from synthetic cells results in protein clustering in the muscle tissue essential for the eventual contraction of the muscle. In this way we will utilise a biochemical approach to control the contraction of muscle tissue, forming for the first time a synthetic neuromuscular junction. Such junctions could be utilised as a new model to study synapse organisation in biology, lead to new tissue engineering strategies utilising synthetic cell co-cultures, and integrated into biohybrid robots to create a new generation of advanced bioinspired robots with increased functional lifetime.In order to achieve this we are bringing together world leading research expertise in the UK and Japan with a view to bringing together expertise not available in concert elsewhere in the word: namely Ces (synthetic cells) and Takeuchi (biohybrid systems).
自下而上的合成生物学旨在通过组合模仿生物学中存在的结构、功能和包含信息的角色的分子来重现细胞有机体的结构和行为。这些结构被称为合成细胞,它们可以作为研究生物过程(如移动或复制)的框架,也可以作为微型试管,在其中可以进行化学和生化反应。在过去的5-10年里,合成细胞已经开发出来,可以产生蛋白质生物分子,如果被活细胞感知,可以导致细胞行为的变化。因此,合成细胞和活细胞之间特定界面的组装可以起到控制生物系统的作用,模仿生物突触中的组织,其中一个细胞位于第二个细胞附近,促进细胞之间受控的化学信号传递。这种结构对于神经系统和肌肉之间的交流是必不可少的,在那里,神经肌肉接头(NMJ)的突触通信控制着高级动物肌肉的收缩。在生物学中,肌肉组织使动物能够移动并承担复杂的任务。这导致了工程肌肉组织在生物工程的另一个新兴领域--生物混合机器人--的应用。生物混合机器人利用生物成分作为机器人的核心部分,例如控制肌肉组织的收缩来驱动能够拾取和释放物体的生物混合机器人。然而,激活机器人的传统方法依赖于使用电信号来激活肌肉收缩。虽然这会导致成功的激活,但这种方法会破坏肌肉组织,限制机器人的寿命,并限制这种方法在更大的生物混合设备中的实施。该项目旨在组装合成细胞-肌肉组织界面,其中表达和释放来自合成细胞的通讯蛋白AGRIN,导致肌肉组织中的蛋白质聚集,这是肌肉最终收缩所必需的。通过这种方式,我们将利用生化方法来控制肌肉组织的收缩,首次形成一个合成的神经肌肉连接。这种连接可以被用作研究生物学中突触组织的新模型,利用合成细胞共培养产生新的组织工程策略,并集成到生物混合机器人中,以创造具有更长功能寿命的新一代先进的生物灵感机器人。为了实现这一点,我们汇集了英国和日本世界领先的研究专业知识,以期汇集世界其他地方没有的专业知识:即CES(合成细胞)和Takeuchi(生物杂交系统)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oscar Ces其他文献

Hydrogels as functional components in artificial cell systems
水凝胶作为人工细胞系统中的功能性成分
  • DOI:
    10.1038/s41570-022-00404-7
  • 发表时间:
    2022-07-27
  • 期刊:
  • 影响因子:
    51.700
  • 作者:
    Matthew E. Allen;James W. Hindley;Divesh K. Baxani;Oscar Ces;Yuval Elani
  • 通讯作者:
    Yuval Elani
Evidence that drug molecules eat their way through membranes and the consequences for phospholipidosis
  • DOI:
    10.1016/j.chemphyslip.2009.06.129
  • 发表时间:
    2009-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Oscar Ces;Duncan R. Casey;Sarra C. Sebai;Gemma C. Shearman;Xavier Mulet;Claire Stanley;Robert V. Law;Richard H. Templer;Antony D. Gee
  • 通讯作者:
    Antony D. Gee
Hydrostatic pressure effects on a hydrated lipid inverse micellar Fd3m cubic phase.
静水压力对水合脂质反胶束 Fd3m 立方相的影响。
  • DOI:
    10.1039/c0cp01783c
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Tyler;G. Shearman;Nicholas J. Brooks;H. Delacroix;Robert V. Law;R. Templer;Oscar Ces;J. Seddon
  • 通讯作者:
    J. Seddon
High Pressure Static and Time-Resolved X-Ray Studies of Inverse Phases in Cholesterol / Lipid Mixtures
  • DOI:
    10.1016/j.bpj.2009.12.1252
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Arwen I.I. Tyler;Gemma C. Shearman;Nicholas J. Brooks;Richard H. Templer;Oscar Ces;Robert V. Law;John M. Seddon
  • 通讯作者:
    John M. Seddon
Generation of S-Layer Supported Functionalized Lipid Bilayers
  • DOI:
    10.1016/j.bpj.2010.12.2955
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Angelika Schrems;Oscar Ces;Vanessa D. Larisch;Karin Dutter;Jacqueline Friedmann;Seta Küpcü;Christian Stanetty;Asmorom Kibrom;Karl Lohner;Uwe B. Sleytr;Bernhard Schuster
  • 通讯作者:
    Bernhard Schuster

Oscar Ces的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Oscar Ces', 18)}}的其他基金

Japan_IPAP: Embedding protein crystals within synthetic tissues as catalytic soft materials
Japan_IPAP:将蛋白质晶体嵌入合成组织中作为催化软材料
  • 批准号:
    BB/X01259X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 19.25万
  • 项目类别:
    Research Grant
21ENGBIO: Microenvironment-Responsive Synthetic Cells for Cancer Drug Delivery
21ENGBIO:用于癌症药物输送的微环境响应性合成细胞
  • 批准号:
    BB/W012871/1
  • 财政年份:
    2022
  • 资助金额:
    $ 19.25万
  • 项目类别:
    Research Grant
Creativity@home-Novel Tools for Single Cell Manipulation
Creativity@home-单细胞操作的新工具
  • 批准号:
    EP/I031561/1
  • 财政年份:
    2011
  • 资助金额:
    $ 19.25万
  • 项目类别:
    Research Grant
Optical Control of Emulsion Drops for Nanofluidics and Microfabrication
用于纳米流体和微加工的乳液滴的光学控制
  • 批准号:
    EP/I013342/1
  • 财政年份:
    2011
  • 资助金额:
    $ 19.25万
  • 项目类别:
    Research Grant
Elements of a Vesicle Machine
囊泡机的组成部分
  • 批准号:
    EP/H024425/1
  • 财政年份:
    2010
  • 资助金额:
    $ 19.25万
  • 项目类别:
    Research Grant

相似国自然基金

Frontiers of Environmental Science & Engineering
  • 批准号:
    51224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21024805
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

22BBSRC-NSF/BIO: A synthetic pyrenoid to guide the engineering of enhanced crops
22BBSRC-NSF/BIO:指导改良作物工程的合成核糖体
  • 批准号:
    BB/Y000323/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.25万
  • 项目类别:
    Research Grant
Engineering biological signaling pathways using synthetic cells (SIGSYNCELL)
使用合成细胞工程生物信号通路 (SIGSYNCELL)
  • 批准号:
    EP/Y031326/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.25万
  • 项目类别:
    Research Grant
Enzyme engineering to protect unstable metabolic intermediates in synthetic pathways
酶工程保护合成途径中不稳定的代谢中间体
  • 批准号:
    24K17829
  • 财政年份:
    2024
  • 资助金额:
    $ 19.25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
SIGSYNCELL: Engineering biological signaling pathways using synthetic cells
SIGSYNCELL:使用合成细胞工程生物信号通路
  • 批准号:
    EP/Y032675/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.25万
  • 项目类别:
    Research Grant
Conference: 2024 Synthetic Biology: Engineering, Evolution and Design (SEED) Conference
会议:2024年合成生物学:工程、进化和设计(SEED)会议
  • 批准号:
    2413726
  • 财政年份:
    2024
  • 资助金额:
    $ 19.25万
  • 项目类别:
    Standard Grant
SafePhage: Engineering synthetic phages with intrinsic biocontainment
SafePhage:具有内在生物防护的工程合成噬菌体
  • 批准号:
    BB/Y007743/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.25万
  • 项目类别:
    Research Grant
Framework construction and engineering development of polarimetric-interferometric synthetic aperture radar based on phasor-quaternion neural networks
基于相量四元数神经网络的偏振干涉合成孔径雷达框架构建及工程开发
  • 批准号:
    23H00487
  • 财政年份:
    2023
  • 资助金额:
    $ 19.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Engineering Receptors to Control Platelet Activation and Therapeutic Release
工程受体来控制血小板激活和治疗释放
  • 批准号:
    10607886
  • 财政年份:
    2023
  • 资助金额:
    $ 19.25万
  • 项目类别:
Conference: An International Conference on Engineering Synthetic Cells and Organelles
会议:工程合成细胞和细胞器国际会议
  • 批准号:
    2241365
  • 财政年份:
    2023
  • 资助金额:
    $ 19.25万
  • 项目类别:
    Standard Grant
ExpandQISE: Track 2: Leveraging synthetic degrees of freedom for quantum state engineering in photonic chips
ExpandQISE:轨道 2:利用光子芯片中量子态工程的合成自由度
  • 批准号:
    2328993
  • 财政年份:
    2023
  • 资助金额:
    $ 19.25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了