The placental barrier and the fetal exposome: exploring the mechanisms underlying fetal exposures

胎盘屏障和胎儿暴露组:探索胎儿暴露的机制

基本信息

  • 批准号:
    BB/X01603X/1
  • 负责人:
  • 金额:
    $ 64.81万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Over 80% of pregnant women need to take medicines for their health. Medication is often essential to treat serious medical conditions such as diabetes, depression, infections, and multiple sclerosis. While the baby is growing in the womb, it is partially protected from drugs and environmental toxins in the mother's blood by an organ called the placenta (also known as the afterbirth). Many medicines cross the placenta (e.g. the antidiabetic drug metformin), but it is not always clear how this happens. It is not just medicines that may cross the placenta. Pregnant women encounter many potentially harmful compounds in their environment that they cannot easily avoid. These include nanoparticles from diesel, plastic, or even home cooking, heavy metals (e.g. lead in paint), food additives and workplace exposures.The placenta has a difficult job as it must protect the baby from harmful drugs and toxins in the maternal blood while also feeding the baby in the womb. The protective barrier within the placenta is called the syncytiotrophoblast. If the placental syncytiotrophoblast does not work effectively, the baby may be exposed to drugs, toxins or viruses that stop it from developing as it should. These developmental problems could lead to birth defects or more subtle problems that increase the risk of chronic diseases later in life.Because pregnant women may be exposed to a wide range of chemicals, we need to understand which types of chemicals cross the placenta most effectively. The substances that cross the placenta most easily may be more dangerous to the baby in the womb. This study is unique in that it will study the transfer of many substances at once. To do this, we will use a technique called nuclear magnetic resonance, which can measure the levels of multiple chemicals in the same samples. This will reduce the number of experiments we need to do tenfold, meaning we get the data faster and cost-effectively. We have used new microscopes to discover tiny (nanoscale) structures in the placenta. Using these microscopes, we have recently shown that the syncytiotrophoblast is punctuated by tiny holes that span the entire thickness of the barrier. We have called these holes called trans-syncytial nanopores. These holes can be 2000 times thinner than a human hair but are big enough for many medicines and environmental toxins to pass through. Our new finding that there are many tiny nanopores penetrating the placenta changes the way we think about the placenta barrier, from a solid wall between the mother and the fetus to something more like a fine sieve.Nanopores may be necessary to help regulate how the baby grows and develops in the womb. We think nanopores may ensure that the baby gets the right balance of water and salts. The right balance of water and salts allows the baby to grow correctly. However, in performing these useful roles, the nanopores may also allow harmful chemicals to reach the fetus.Once we have a better understanding of the nanopores, future studies will be able to assess their impact on fetal health. These impacts may be positive, e.g. balancing water and salts, or harmful, e.g. exposing the baby to helpful or toxic substances. This study will help doctors to decide which medicines are safe and environmental agencies to understand what forms of pollution are the greatest risk to pregnant women. Although nanopores may expose the baby to dangerous chemicals, they could also allow good things across the placenta to the baby, for instance, medicines or nutrients the baby needs. Using the knowledge this project will generate, scientists could design medicines more likely to travel through the nanopores and reach the fetus. Babies born healthy are more likely to be healthy later in life, which has personal, social and economic benefits.
超过80%的孕妇需要服用药物来维持健康。药物治疗对于治疗严重的疾病如糖尿病、抑郁症、感染和多发性硬化症通常是必不可少的。当婴儿在子宫中生长时,它被一种称为胎盘(也称为胞膜)的器官部分保护免受母亲血液中的药物和环境毒素的影响。许多药物(例如抗糖尿病药物二甲双胍)可以穿过胎盘,但这是如何发生的并不总是清楚。不仅仅是药物可以穿过胎盘。孕妇在环境中遇到许多潜在的有害化合物,她们无法轻易避免。这些包括来自柴油、塑料甚至家庭烹饪的纳米颗粒、重金属(例如油漆中的铅)、食品添加剂和工作场所暴露。胎盘的工作很困难,因为它必须保护婴儿免受母体血液中有害药物和毒素的伤害,同时还要喂养子宫内的婴儿。胎盘内的保护屏障称为合体滋养层。如果胎盘合胞体滋养层不能有效地工作,婴儿可能会接触药物,毒素或病毒,阻止其正常发育。这些发育问题可能导致出生缺陷或更微妙的问题,增加以后患慢性疾病的风险。由于孕妇可能接触到各种化学物质,我们需要了解哪种类型的化学物质最有效地穿过胎盘。最容易穿过胎盘的物质可能对子宫内的婴儿更危险。这项研究的独特之处在于它将同时研究许多物质的转移。为此,我们将使用一种称为核磁共振的技术,该技术可以测量同一样品中多种化学物质的水平。这将使我们需要做的实验数量减少十倍,这意味着我们可以更快、更经济地获得数据。我们使用新的显微镜来发现胎盘中的微小(纳米级)结构。利用这些显微镜,我们最近发现合体滋养层被跨越整个屏障厚度的小孔所打断。我们将这些孔称为跨合胞体纳米孔。这些小孔比人的头发细2000倍,但足够大,许多药物和环境毒素可以通过。我们的新发现是,有许多微小的纳米孔穿透胎盘,这改变了我们对胎盘屏障的看法,从母亲和胎儿之间的固体壁变成了更像细筛的东西。纳米孔可能是帮助调节婴儿在子宫内生长发育所必需的。我们认为纳米孔可以确保婴儿获得正确的水和盐的平衡。正确的水和盐的平衡可以让宝宝正确地成长。然而,在执行这些有用的角色时,纳米孔也可能允许有害化学物质到达胎儿。一旦我们对纳米孔有了更好的了解,未来的研究将能够评估它们对胎儿健康的影响。这些影响可能是积极的,例如平衡水和盐,也可能是有害的,例如使婴儿接触有益或有毒物质。这项研究将帮助医生决定哪些药物是安全的,并帮助环境机构了解什么形式的污染对孕妇的风险最大。虽然纳米孔可能会使婴儿接触危险的化学物质,但它们也可以让好东西穿过胎盘到达婴儿,例如婴儿需要的药物或营养素。利用这个项目将产生的知识,科学家们可以设计出更有可能通过纳米孔到达胎儿的药物。出生时健康的婴儿更有可能在以后的生活中保持健康,这对个人,社会和经济都有好处。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rohan Lewis其他文献

Comparative placentation from a three-dimensional and multiscale structural perspective
  • DOI:
    10.1016/j.placenta.2023.07.044
  • 发表时间:
    2023-09-07
  • 期刊:
  • 影响因子:
  • 作者:
    Davis Laundon;Neil Gostling;Bram Sengers;Pascale Chavatte-Palmer;Rohan Lewis
  • 通讯作者:
    Rohan Lewis
The role of placental OATP4A1 in obstetric cholestasis
  • DOI:
    10.1016/j.placenta.2017.07.095
  • 发表时间:
    2017-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Emma Lofthouse;Bram Sengers;Rohan Lewis
  • 通讯作者:
    Rohan Lewis
Human placental metabolism of vitamin D and transfer to maternal and fetal circulations
  • DOI:
    10.1016/j.placenta.2019.06.359
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Brogan Ashley;Emma Lofthouse;Felicity Hey;Kerry Jones;Nicholas Harvey;Rohan Lewis;Jane Cleal
  • 通讯作者:
    Jane Cleal
How to design a perfusion experiment to obtain the maximum benefit from mathematical modelling
  • DOI:
    10.1016/j.placenta.2023.07.090
  • 发表时间:
    2023-09-07
  • 期刊:
  • 影响因子:
  • 作者:
    Rohan Lewis;Bram Sengers
  • 通讯作者:
    Bram Sengers
Correlative three-dimensional X-ray histology (3D-XRH) as a tool for quantifying mammalian placental structure
  • DOI:
    10.1016/j.placenta.2024.07.084
  • 发表时间:
    2024-09-02
  • 期刊:
  • 影响因子:
  • 作者:
    Davis Laundon;Thomas Lane;Orestis Katsamenis;Jeanette Norman;Lois Brewer;Shelley Harris;Philip Basford;Justine Shotton;Danielle Free;Georgina Constable-Dakeyne;Neil Gostling;Pascale Chavatte-Palmer;Rohan Lewis
  • 通讯作者:
    Rohan Lewis

Rohan Lewis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rohan Lewis', 18)}}的其他基金

Convergent evolution of placental villi in primates and ungulates: Are some placentas more efficient than others?
灵长类动物和有蹄类动物胎盘绒毛的趋同进化:某些胎盘是否比其他胎盘更有效?
  • 批准号:
    BB/Y005953/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.81万
  • 项目类别:
    Research Grant
Coupling of organic anion transport to the glutamate gradient by OATs and OATPs
OAT 和 OATP 耦合有机阴离子转运至谷氨酸梯度
  • 批准号:
    BB/L020823/1
  • 财政年份:
    2014
  • 资助金额:
    $ 64.81万
  • 项目类别:
    Research Grant
Amino acid transport through the placenta: an experimental and modelling investigation
通过胎盘的氨基酸转运:实验和建模研究
  • 批准号:
    BB/I011315/1
  • 财政年份:
    2011
  • 资助金额:
    $ 64.81万
  • 项目类别:
    Research Grant

相似国自然基金

基于MFSD2A调控血迷路屏障跨细胞囊泡转运机制的噪声性听力损失防治研究
  • 批准号:
    82371144
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
内源性蛋白酶抑制剂SerpinA3N对缺血性脑卒中后血脑屏障的保护作用及其表达调控机制
  • 批准号:
    82371317
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
新生儿坏死性小肠结肠炎中去泛素化酶USP15调控ILC3分化损伤肠道粘膜屏障的致病机制研究
  • 批准号:
    82371711
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
紧密连接蛋白PARD3下调介导黏膜上皮屏障破坏激活STAT3/SNAI2通路促进口腔白斑病形成及进展的机制研究
  • 批准号:
    82370954
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
KLK10调控胶质—血管耦合与对话促缺血性卒中后血脑屏障修复的机制
  • 批准号:
    82371465
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于智能预测控制的Barrier Bucket高频数字低电平系统关键技术研究
  • 批准号:
    11975289
  • 批准年份:
    2019
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
Barrier Bucket双环双频模式下的高精度踢轨控制系统关键技术研究
  • 批准号:
    U1632141
  • 批准年份:
    2016
  • 资助金额:
    50.0 万元
  • 项目类别:
    联合基金项目
短链脂肪酸上调小肠上皮紧密连接屏障功能的机制
  • 批准号:
    31040041
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Placental barrier culture to delineate the mechanism of hepatitis E virus infection at the maternal and fetal interface
胎盘屏障培养描绘母体和胎儿界面戊型肝炎病毒感染的机制
  • 批准号:
    10716971
  • 财政年份:
    2023
  • 资助金额:
    $ 64.81万
  • 项目类别:
Strategies to define and mitigate the placental and fetal alterations caused by maternal oxycodone exposure
确定和减轻母体羟考酮暴露引起的胎盘和胎儿改变的策略
  • 批准号:
    10750458
  • 财政年份:
    2023
  • 资助金额:
    $ 64.81万
  • 项目类别:
A synergistic in vitro-in silico model of the placental barrier for predicting fetal exposure and toxicity of xenobiotic compounds
胎盘屏障的协同体外计算机模拟模型,用于预测胎儿的外源化合物暴露和毒性
  • 批准号:
    10698740
  • 财政年份:
    2023
  • 资助金额:
    $ 64.81万
  • 项目类别:
Novel Roles for Phospholipids in Regulating Placental Function and in the Delivery of DHA to the Fetal Brain.
磷脂在调节胎盘功能和向胎儿大脑输送 DHA 方面的新作用。
  • 批准号:
    10363536
  • 财政年份:
    2022
  • 资助金额:
    $ 64.81万
  • 项目类别:
Novel Roles for Phospholipids in Regulating Placental Function and in the Delivery of DHA to the Fetal Brain.
磷脂在调节胎盘功能和向胎儿大脑输送 DHA 方面的新作用。
  • 批准号:
    10655278
  • 财政年份:
    2022
  • 资助金额:
    $ 64.81万
  • 项目类别:
Novel Roles of Placental Allopregnanolone in Brain Development and Injury
胎盘四氢孕酮在大脑发育和损伤中的新作用
  • 批准号:
    10213791
  • 财政年份:
    2020
  • 资助金额:
    $ 64.81万
  • 项目类别:
Novel Roles of Placental Allopregnanolone in Brain Development and Injury
胎盘四氢孕酮在大脑发育和损伤中的新作用
  • 批准号:
    10171257
  • 财政年份:
    2020
  • 资助金额:
    $ 64.81万
  • 项目类别:
Prenatal metal mixtures and neurodevelopment: Role of placental extracellular microRNAs
产前金属混合物和神经发育:胎盘细胞外 microRNA 的作用
  • 批准号:
    9765987
  • 财政年份:
    2019
  • 资助金额:
    $ 64.81万
  • 项目类别:
Prenatal metal mixtures and neurodevelopment: Role of placental extracellular microRNAs
产前金属混合物和神经发育:胎盘细胞外 microRNA 的作用
  • 批准号:
    10405646
  • 财政年份:
    2019
  • 资助金额:
    $ 64.81万
  • 项目类别:
Prenatal metal mixtures and neurodevelopment: Role of placental extracellular microRNAs
产前金属混合物和神经发育:胎盘细胞外 microRNA 的作用
  • 批准号:
    10670065
  • 财政年份:
    2019
  • 资助金额:
    $ 64.81万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了